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PREFACE
TO THE THIRD EDITION

The objective of Mechanical Metallurgy continues to be the presentation of the
entire scope of mechanical metallurgy in a single comprehensive volume. Thus,
the book starts with a continuum description of stress and strain, extends this
background to the defect mechanisms of flow and fracture of metals, and then
considers the major mechanical property tests and the basic metalworking
processes. As before, the book 1s intended for the senior or first-year graduate-stu-
dent level. Emphasis is on basic phenomena and relationships in an engineering
context. Extensive references to the literature have been included to assist
students in digging deeper into most topics.

Since the second edition in 1976 extensive progress has been made in all
research areas of the mechanical metallurgy spectrum. Indeed, mechanical behav-
ior 1s the category of research under which the greatest number of papers are
published in Metallurgical Transactions. Since 1976 the field of fracture mechan-
Ics has grown greatly in general acceptance. In recognition of this a separate
chapter on fracture mechanics has been added to the present edition, replacing a
chapter on mechanical behavior of polymeric materials. Other topics added for
the first time or greatly expanded in coverage are deformation maps, finite
element methods, environmentally assisted fracture, and creep-fatigue interaction.

As an aid to the student, numerous illustrative examples have been included
throughout the book. Answers have been provided to selected problems for the
student, and a solutions manual 1s available for instructors. In this third edition,
major emphasis is given to the use of SI units, as is common with most
engineering texts today.

I would like to express my thanks for the many useful comments and
suggestions provided by Ronald Scattergood, North Carolina State University,
and Oleg Sherby, Stanford University, who reviewed this text during the course of
its development.
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Acknowledgment 1s given to Professor Ronald Armstrong, University of
Maryland, for providing many stimulating problems, and Dr. A. Pattmak, Naval
Research Laboratory, for assistance in obtaining the fractographs. Special thanks

goes to Jean Beckmann for her painstaking efforts to create a perfect manuscript.

George E. Dieter



_ PREFACE
TO THE SECOND EDITION

In the 12 years since the first edition of Mechanical Metallurgy at least 25
textbooks dealing with major segments of the book have appeared in print. For
example, at least 10 books dealing with the mechanics of metalworking have been
published during this period. However, none of these books has dealt with the
entire scope of mechanical metallurgy, from an understanding of the continuum
description of stress and strain through crystalline and defect mechanisms of flow
and fracture, and on to a consideration of the major mechanical property tests
and the basic metalworking processes.

Important advances have been made in understanding the mechanical behav-
1or of solids in the period since the first edition. The dislocation theory of plastic
deformation has become well established, with excellent experimental verification
for most of the theory. These advances have led to a better understanding of the
strengthening mechanisms in solids. Developments such as fracture mechanics
have matured to a high level of technical sophistication and engineering useful-
ness. An important development during this period has been the “materials
science movement” in which crystalline solids, metals, ceramics, and polymers are
considered as a group whose properties are controlled by basic structural defects
common to all classes of crystalline solids.

In this revision of the book the emphasis 1s as before. The book 1s intended
for the senior or first-year graduate-student level. Extensive revisions have been
made to up-date material, to introduce new topics which have emerged as
important areas, and to clarify sections which have proven difficult for students to
understand. In some sections advanced material intended primarnly for graduate
students has been set in smaller type. The problems have been extensively revised
and expanded, and a solutions manual has been prepared. Two new chapters, one
dealing with the mechanical properties of polymers and the other with the

XY



XVl PREFACE TO THE SECOND EDITION

machining of metals, have been added, while the chapters of statistical methods
and residual stresses have been deleted. In total, more than one-half of the book
has been rewritten completely.

George E. Dieter



PREFACE
TO THE FIRST EDITION

Mechanical metaliurgy is the area of knowledge which deals with the behavior
and response of metals to applied forces. Since 1t is not a precisely defined area, it
will mean different things to different persons. To some 1t will mean mechanical
properties of metals or mechanical testing, others may consider the field restricted
to the plastic working and shaping of metals, while still others confine their
interests to the more theoretical aspects of the field, which merge with metal
physics and physical metallurgy. Still another group may consider that mechani-
cal metallurgy 1s closely allied with applied mathematics and applied mechanics.
In writing this book an attempt has been made to cover, in some measure, this
great diversity of interests. The objective has been to include the entire scope of
mechanical metallurgy in one fairly comprehensive volume.

The book has been divided into four parts. Part One, Mechanical Fundamen-
tals, presents the mathematical framework for many of the chapters which follow.
The concepts of combined stress and strain are reviewed and extended into three
dimensions. Detailed consideration of the theories of yielding and an introduction
to the concepts of plasticity are given. No attempt is made to carry the topics in
Part One to the degree of completion required for original problem solving.
Instead, the purpose i1s to acquaint metallurgically trained persons with the
mathematical language encountered 1in some areas of mechanical metallurgy. Part
Two, Metallurgical Fundamentals, deals with the structural aspects of plastic
deformation and fracture. Emphasis is on the atomistics of flow and fracture and
the way in which metallurgical structure affects these processes. The concept of
the dislocation is introduced early in Part Two and is used throughout to provide
qualitative explanations for such phenomena as strain hardening, the yield point,
dispersed phase hardening, and fracture. A more mathematical treatment of the
properties of dislocations 1s given in a separate chapter. The topics covered in
Part Two stem from physical metallurgy. However, most topics are discussed in

X Vil



xvilli PREFACE TO THE FIRST EDITION

greater detail and with a different emphasis than when they are first covered in
the usual undergraduate course in physical metallurgy. Certain topics that are
more physical metallurgy than mechanical metallurgy are included to provide
continuity and the necessary background for readers who have not studied
modern physical metallurgy.

Part Three, Applications to Materials Testing, deals with the engineering
aspects of the common testing techniques of mechanical failure of metals.
Chapters are devoted to the tension, torsion, hardness, fatigue, creep, and impact
tests. Others take up the important subjects of residual stresses and the statistical
analysis of mechanical-property data. In Part Three emphasis 1s placed on the
interpretation of the tests and on the effect of metallurgical variables on mechani-
cal behavior rather than on the procedures for conducting the tests. It 1s assumed
that the actual performance of these tests will be covered in a concurrent
laboratory course or in a separate course. Part Four, Plastic Forming of Metals,
deals with the common mechanical processes for producing useful metal shapes.
Little emphasis is given to the descriptive aspects of this subject, since this can
best be covered by plant trips and 1llustrated lectures. Instead, the main attention
is given to the mechanical and metallurgical factors which control each process
such as forging, rolling, extrusion, drawing, and sheet-metal forming.

This book 1s written for the senior or first-year graduate studeni in metal-
lurgical or mechanical engineering, as well as for practicing engineers in industry.
While most universities have instituted courses in mechanical metallurgy or

mechanical properties, there 1s a great diversity in the material covered and 1n the

background of the students taking these courses. Thus, for the present there can
be nothing like a standardized textbook on mechanical metallurgy. It 1s hoped
that the breadth and scope of this book will provide material for these somewhat
diverse requirements. It 1s further hoped that the existence of a comprehensive
treatment of the field of mechanical metallurgy will stimulate the development of
courses which cover the total subject.

Since this book 1s intended for college seniors, graduate students, and
practicing engineers, 1t 1s expected to become a part of their professional library.
Although there has been no attempt to make this book a handbook, some thought
has been given to providing abundant references to the literature on mechanical
metallurgy. Therefore, more reterences are included than is usual in the ordinary
textbook. References have been given to point out derivations or analyses beyond
the scope of the book, to provide the key to further information on controversial
or detailed points, and to emphasize important papers which are worthy of
further study. In addition, a bibliography of general references will be found at
the end of each chapter. A collection of problems is included at the end of the
volume. This 1s primarily for the use of the reader who is engaged in industry and
who desires some check on his comprehension of the material.

The task of writing this book has been mainly one of sifting and sorting facts
and information from the literature and the many excellent texts on specialized
aspects of this subject. To cover the breadth of material found in this book would
require parts of over 15 standard texts and countless review articles and individ-

%
=
3
g
f
o

e

Te.

.....

i




PREFACE TO THE FIRST EDITION XIX

ual contributions. A conscientious effort has been made throughout to give credit
to original sources. For the occasional oversights that may have developed during
the “boiling-down process” the author offers his apologies. He 1s. indebted to
many authors and pubhishers who consented to the reproduction of illustrations.
Credit 1s given 1n the captions of the illustrations.

Finally, the author wishes to acknowledge the many friends who advised him
in his work. Special mention should be given to Professor A. W. Grosvenor,
Drexel Institute of Technology, Dr. G. T. Horne, Carnegie Institute of Technol-
ogy, Drs. T. C. Chilton, J. H. Faupel, W. L. Phillips, W. I. Pollock, and J. T.
Ransom of the du Pont Company, and Dr. A. S. Nemy of the Thompson-Ramo-
Wooldridge Corp.

George E. Dieter
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CHAPTER

- ONE
INTRODUCTION

1-1 SCOPE OF THIS BOOK

Mechanical metallurgy 1s the area of metallurgy which 1s concerned primarily with
the response of metals to forces or loads. The forces may arise from the use of the
metal as a member or part in a structure or machine, in which case it 1s necessary
to know something about the limiting values which can be withstood without
failure. On the other hand, the objective may be to convert a cast ingot into a
more useful shape, such as a flat plate, and here it 1s necessary to know the
conditions of temperature and rate of loading which minimize the forces that are
needed to do the job.

Mechanical metallurgy 1s nor a subject which can be neatly isolated and
studied by itself. It is a combination of many disciplines and many approaches to
the problem of understanding the response of materials to forces. On the one
hand is the approach used in strength of materials and in the theories of elasticity
and plasticity, where a metal is considered to be a homogeneous material whose
mechanical behavior can be rather precisely described on the basis of only a very
few material constants. This approach is the basis for the rational design of
structural members and machine parts. The topics of strength of materials,
elasticity, and plasticity are treated in Part One of this book from a more
generalized point of view than is usually considered in a first course in strength of
materials. The material in Chaps. 1 to 3 can be considered the mathematical
framework on which much of the remainder of the book rests. For students of
engineering who have had an advanced course in strength of materials or machine
design, it probably will be possible to skim rapidly over these chapters. However,
for most students of metallurgy and for practicing engineers in industry, it is

3



4 MECHANICAL FUNDAMENTALS

worth spending the time to become familiar with the mathematics presented in
Part One.

The theories of strength of materials, elasticity, and plasticity lose much of
their power when the structure of the metal becomes an important consideration
and it can no longer be considered a homogeneous medium. Examples of this are
in the high-temperature behavior of metals, where the metallurgical structure may
continuously change with time, or in the ductile-to-brittle transition, which occurs
in carbon steel. The determination of the relationship between mechanical behav-
ior and structure (as detected chiefly with microscopic and x-ray techniques) 1s the
main responsibility of the mechanical metallurgist. When mechanical behavior is
understood in terms of metallurgical structure, it 1s generally possible to improve
the mechanical properties or at least to control them. Part Two of this book 1s
concerned with the metallurgical fundamentals of the mechanical behavior of
metals. Metallurgical students will find that some of the matenal in Part Two has
been covered in a previous course in physical metallurgy, since mechanical
metallurgy i1s part of the broader field of physical metallurgy. However, these
subjects are considered in greater detail than is usually the case in a first course 1n
physical metallurgy. In addition, certain topics which pertain more to physical
metallurgy than mechanical metallurgy have been included in order to provide
continuity and to assist nonmetallurgical students who may not have had a course
in physical metallurgy.

The last three chapters of Part Two are concerned primarily with atomustic
concepts of the flow and fracture of metals. Many of the developments in these
arcas have been the result of the alliance of the solid-state physicist with the
metallurgist. This has been an area of great progress. The introduction of
transmission electron microscopy has provided an important experimental tool
for verifying theory and guiding analysis. A body of basic dislocation theory is
presented which 1s useful for understanding the mechanical behavior of crystalline
solids.

Basic data concerning the strength of metals and measurements for the
routine control of mechanical properties are obtained from a relatively small
number of standardized mechanical tests. Part Three, Applications to Materials
Testing, considers each of the common mechanical tests, not from the usual
standpoint of testing techniques, but instead from the consideration of what these
tests tell about the service performance of metals and how metallurgical variables
affect the results of these tests. Much of the material in Parts One and Two has
been utilized in Part Three. It i1s assumed that the reader either has completed a
conventional course in materials testing or will be concurrently taking a labora-
tory course in which familiarization with the testing techniques will be acquired.

Part Four considers the metallurgical and mechanical factors involved in
forming metals into useful shapes. Attempts have been made to present mathe-
matical analyses of the principal metalworking processes, although in certiin
cases this has not been possible, either because of the considerable detail required
or because the analysis 1s beyond the scope of this book. No attempt has been
made to include the extensive specialized technology associated with each metal-
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working process, such as rolling or extrusion, although some effort has been made
to give a general impression of the mechanical equipment required and to
familiarize the reader with the specialized vocabulary of the metalworking field.
Major emphasis has been placed on presenting a fairly simplified picture of the
forces involved in each process and of how geometrical and metallurgical factors
affect the forming loads and the success of the metalworking process.

1-2 STRENGTH OF MATERIALS—BASIC ASSUMPTIONS

Strength of matenals 1s the body of knowledge which deals with the relation
between internal forces, deformation, and external loads. In the general method
of analysis used in strength of materials the first step i1s to assume that the
member 1s in equilibrium. The equations of static equilibrium are applied to the
forces acting on some part of the body 1n order to obtain a relationship between
the external forces acting on the member and the internal forces resisting the
action of the external loads. Since the equations of equilibrium must be expressed
in terms of forces acting external to the body, it is necessary to make the internal
resisting forces into external forces. This 1s done by passing a plane through the
body at the point of interest. The part of the body lying on one side of the cutting
plane 1s removed and replaced by the forces it exerted on the cut section of the
part of the body that remains. Since the forces acting on the “free body” hold it
in equilibrium, the equations of equilibrium may be applied to the problem.

The internal resisting forces are usually expressed by the stress' acting over a
certain area, so that the internal force i1s the integral of the stress times the
differential area over which it acts. In order to evaluate this integral, it is
necessary to know the distribution of the stress over the area of the cutting plane.
The stress distribution i1s arrived at by observing and measuring the strain
distribution 1n the member, since stress cannot be physically measured. However,
since stress is proportional to strain for the small deformations involved in most
work, the determination of the strain distribution provides the stress distribution.
The expression for the stress is then substituted into the equations of equilibrium,
and they are solved for stress in terms of the loads and dimensions of the
member.

- Important assumptions in strength of materials are that the body which is
being analyzed is continuous, homogeneous, and isotropic. A continuous body
1S one which does not contain voids or empty spaces of any kind. A body is
homogeneous if it has identical properties at all points. A body is considered to be
isotropic with respect to some property when that property does not vary with
direction or orientation. A property which varies with orientation with respect to
some system of axes 1s said to be anisotropic.

' For present purposes stress is defined as force per unit area. The companion term strain is
defined as the change in length per unit length. More complete definitions will be given later.
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While engineering materials such as steel, cast iron, and aluminum may
appear to meet these condittons when viewed on a gross scale, it 1s readily
apparent when they are viewed through a microscope that they are anything but
homogeneous and 1sotropic. Most engineering metals are made up of more than
one phase, with different mechanical properties, such that on a micro scale they
are heterogeneous. Further, even a single-phase metal will usually exhibit chem-
ical segregation, and therefore the properties will not be identical from point to
point. Metals are made up of an aggregate of crystal grains having different
properties in different crystallographic directions. The reason why the equations
of strength of materials describe the behavior of real metals i1s that, in general, the
crystal grains are so small that, for a specimen of any macroscopic volume, the
materials are statistically homogeneous and isotropic. However, when metals are
severely deformed 1n a particular direction, as in rolling or forging, the mechani-
cal properties may be anisotropic on a macro scale. Other examples of anisotropic
properties are fiber-reinforced composite materials and single crystals. Lack of
continuity may be present in porous castings or powder metallurgy parts and, on
an atomic level, at defects such as vacancies and dislocations.

1-3 ELASTIC AND PLASTIC BEHAVIOR

Experience shows that all solid materials can be deformed when subjected to
external load. It is further found that up to certain limiting loads a solid ‘will
recover 1ts original dimensions when the load 1s removed. The recovery of the
original dimensions of a deformed body when the load is removed is known as
elastic behavior. The llmiting load beyond which the material no longer behaves
elastically 1s the elastic limit. If the elastic lmit is exceeded, the body will
experience a permanent set or deformation when the load 1s removed. A body
which 1s permanently deformed is said to have undergone plastic deformation.
For most matenials, as long as the load does not exceed the elastic limit, the
deformation i1s proportional to the load. This relationship 1s known as Hooke’s
law; 1t 1s more frequently stated as stress is proportional to strain. Hooke’s law
requires that the load-deformation relationship should be hinear. However, it does
not necessarily follow that all materials which behave elastically will have a linear

stress-strain relationship. Rubber is an example of a material with a nonlinear

stress-strain relationship that still satisfies the definition of an elastic material.
Elastic deformations in metals are quite small and require very sensitive
instruments for their measurement. Ultrasensitive instruments have shown that
the elastic limits of metals are much lower than the values usually measured in
engineering tests of materials. As the measuring devices become more sensitive,
the elastic limit is decreased, so that for most metals there is only a rather narrow
range of loads over which Hooke’s law strictly applies. This 1s, however, primari1§

of academic importance. Hooke’s law remains a quite valid relationship for
engineering design.
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Figure 1-1 Cylindrical bar subjected to axial load. Figure 1-2 Free-body diagram for Fig. 1-1.
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1-4 AVERAGE STRESS AND STRAIN

As a starting point in the discussion of stress and strain, consider a uniform
cylindrical bar which 1s subjected to an axial tensile load (Fig. 1-1). Assume that
two gage marks are put on the surface of the bar in its unstrained state and that
L, is the gage length between these marks. A load P 1s applied to one end of the
bar, and the gage length undergoes a slight increase in length and decrease in
diameter. The distance between the gage marks has increased by an amount o,
called the deformation. The average linear strain e 1s the ratio of the change 1n
length to the original length.

§ AL L -1,
LO LO LO

(1-1)

Strain is a dimensionless quantity since both 8 and L, are expressed in units of
length. .

Figure 1-2 shows the free-body diagram for the cylindrical bar shown 1n Fig.
1-1. The external load P 1s balanced by the internal resisting force Jo dA4, where o
1s the stress normal to the cutting plane and A4 is the cross-sectional area of the
bar. The equilibrium equation is

P = fcrdA ﬂ (1-2)

If the stress is distributed uniformly over the area A, that is, if o is constant, Eq.
(1-2) becomes

P=0[dd=o4

- (1-3)
g = _
A
In general, the stress will not be uniform over the area A4, and therefore Eq. (1-3)
ICpresents an average stress. For the stress to be absolutely uniform, every
longitudinal element in the bar would have to experience exactly the same strain,
and the proportionality between stress and strain would have to be identical for
¢ach element. The inherent anisotropy between grains in a polycrystalline metal

rules out the possibility of complete uniformity of stress over a bodv of macro-
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scopic size. The presence of more than one phase also gives rise to nonuniformity
of stress on a microscopic scale. If the bar 1s not straight or not centrally loaded,
the strains will be different for certain longitudinal elements and the stress will
not be uniform. An extreme disruption in the uniformity of the stress pattern
occurs when there is an abrupt change in cross section. This results in a stress
raiser or stress concentration (see Sec. 2-15).

Below the elastic hmit Hooke’s law can be considered valid, so that the
average stress 1s proportional to the average strain,

O

— = E = constant (1-4)
e

The constant E 1s the modulus of elasticity, or Young’s modulus.

1-5 TENSILE DEFORMATION OF DUCTILE METAL

The basic data on the mechanical properties of a ductile metal are obtained from
a tension test, in which a suitably designed specimen 1s subjected to increasing
axial load until 1t fractures. The load and elongation are measured at frequent
intervals during the test and are expressed as average stress and strain according
to the equations in the previous section. (More complete details on the tension
test are given in Chap. 8.)

The data obtained from the tension test are generally plotted as a stress-strain
diagram. Figure 1-3 shows a typical stress-strain curve for a metal such as
aluminum or copper. The mitial linear portion of the curve OA is the elastic
region within which Hooke’s law 1s obeyed. Point A is the elastic limit, defined as
the greatest stress that the metal can withstand without experiencing a permanent
strain when the load is removed. The determination of the elastic limit is quite
tedious, not at all routine, and dependent on the sensitivity of the strain-measur-
ing instrument. For these reasons it 1s often replaced by the proportional limit,
point A’. The proportional limit is the stress at which the stress-strain curve
deviates from linearity. The slope of the stress-strain curve in this region is the
modulus of elasticity.

Stress o

oc . . -
' Figure 1-3 Typical tension stress-strain curve,
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For engineering purposes the limit of usable elastic behavior is described by
the yield strength, point B. The yield strength is defined as the stress which will
produce a small amount of permanent deformation, generally equal to a strain of
0.002. In Fig. 1-3 this permanent strain, or offset, 1s OC. Plastic deformation
begins when the elastic limit 1s exceeded. As the plastic deformation of the
specimen 1ncreases, the metal becomes stronger (strain hardening) so that the load
required to extend the specimen increases with further straining. Eventually the
joad reaches a maximum value. The maximum load divided by the original area
of the specimen 1s the ultimate tensile strength. For a ductile metal the diameter of
the specimen begins to decrease rapidly beyond maximum load, so that the load
required to continue deformation drops off until the specimen fractures. Since the
average stress 1s based on the original area of the specimen, it also decreases from
maximum load to fracture.

1-6 DUCTILE VS. BRITTLE BEHAVIOR

The general behavior of matenials under load can be classified as ductile or brittle
depending upon whether or not the matenal exhibits the ability to undergo plastic
deformation. Figure 1-3 illustrates the tension stress-strain curve of a ductile
material. A completely brittle material would fracture almost at the elastic limit
(Fig. 1-4a), while a brittle metal, such as white cast iron, shows some slight
measure of plasticity before fracture (Fig. 1-4b). Adequate ductility 1s an 1m-
portant engineering consideration, because it allows the material to redistribute
localized stresses. When localized stresses at notches and other accidental stress
concentrations do not have to be considered, it i1s possible to design for static
situations on the basis of average stresses. However, with brittle materials,
localized stresses continue to build up when there is no local yielding. Finally, a
crack forms at one or more points of stress concentration, and it spreads rapidly
over the section. Even if no stress concentrations are present in a brittle material,
~ fracture will still occur suddenly because the yield stress and tensile strength are
practically identical.
It 1s important to note that brittleness is not an absolute property of a metal.
A metal such as tungsten, which is brittle at room temperature, is ductile at an
elevated temperature. A metal which is brittle in tension may be ductile under
hydrostatic compression. Furthermore, a metal which is ductile in tension at room

Stress
Stress

_ __ Figure 1-4 (a) Stress-strain curve for completely
Strain Strain brittle matenial (ideal behavior); (b) stress-strain
(a) (6} curve for brittle metal with slight amount of ductility.
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temperature can become brittie in the presence of notches, low temperature, high
rates of loading, or embrittling agents such as hydrogen.

1-7 WHAT CONSTITUTES FAILURE?

Structural members and machine elements can fail to perform their intended
functions in three general ways:

1. Excessive elastic deformation
2. Yielding, or excessive plastic deformation
3. Fracture |

An understanding of the common types of failure is important in good design
because 1t 1s always necessary to relate the loads and dimensions of the member
to some significant material parameter which limits the load-carrying capacity of
the member. For different types of failure, different significant parameters will be
important.

Two general types of excessive elastic deformation may occur: (1) excessive
deflection under condition of stable equilibrium, such as the deflection of beam
under gradually applied loads; (2) sudden defiection, or buckling, under condi-
tions of unstable equilibrium.

Excessive elastic deformation of a machine part can mean failure of the
machine just as much as if the part completely fractured. For example, a shaft
which 1s too flexible can cause rapid wear of the bearing, or the excessive
deflection of closely mating parts can result in interference and damage to the
parts. The sudden buckling type of failure may occur in a slender column when
the axial load exceeds the Euler critical load or when the external pressure acting
against a thin-walled shell exceeds a critical value. Failures due to excessive elastic
deformation are controlled by the modulus of elasticity, not by the strength of the
material. Generally, little metallurgical control can be exercised over the elastic
modulus. The most effective way to increase the stiffness of a member is usually
by changing 1ts shape and increasing the dimensions of its cross section.

Yielding, or excessive plastic deformation, occurs when the elastic limit of the
metal has been exceeded. Yielding produces permanent change of shape, which
may prevent the part from functioning properly any longer. In a ductile metal
under conditions of static loading at room temperature yielding rarely results in
fracture, because the metal strain hardens as it deforms, and an increased stress is
required to produce further deformation. Failure by excessive plastic deformation
1s controlled by the yield strength of the metal for a uniaxial condition of loading.
For more complex loading conditions the yield strength is still the significant
parameter, but 1t must be used with a suitable failure criterion (Sec. 3-4). At
temperatures significantly greater than room temperature metals no longer exhibit
strain hardening. Instead, metals can continuously deform at constant stress in g
time-dependent yielding known as creep. The failure criterion under creep condi-
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tions 1s complicated by the fact that stress 1s not proportional to strain and the
further fact that the mechanical properties of the material may change apprecia-
bly during service. This complex phenomenon will be considered 1n greater detail
in Chap. 13.

The formation of a crack which can result in complete disruption of continu-
ity of the member constitutes fracture. A part made from a ductile metal which 1s
loaded statically rarely fractures like a tensile specimen, because 1t will first fail by
excessive plastic deformation. However, metals fail by fracture in three general
ways: (1) sudden brittle fracture; (2) fatigue, or progressive fracture; (3) delayed
fracture. In the previous section 1t was shown that a brittle material fractures
under static loads with little outward evidence of yielding. A sudden brittle type
of fracture can also occur in ordinarily ductile metals under certain conditions.
Plain carbon structural steel 1s the most common example of a material with a
ductile-to-brittle transition. A change from the ductile to the brittle type of
~fracture 1s promoted by a decrease in temperature, an increase in the rate of
loading, and the presence of a complex state of stress due to a notch. This
- problem 1s considered in Chap. 14. A powerful and quite general method of
analysis for brittle fracture problems 1s the technique called fracture mechanics.

This 1s treated 1n detail in Chap. 11.

‘ Most fractures in machine parts are due to fatigue. Fatigue faillures occur in
parts which are subjected to alternating, or fluctuating, stresses. A minute crack
starts at a localized spot, generally at a notch or stress concentration, and
egradually spreads over the cross section until the member breaks. Fatigue failure
occurs without any visible sign of yielding at nominal or average stresses that are
well below the tensile strength of the metal. Fatigue failure 1s caused by a critical
localized tensile stress which is very difficult to evaluate, and therefore design for
fatigue failure s based primarily on empirical relationships using nominal stresses.
Fatigue of metals 1s discussed in greater detail in Chap. 12.

One common type of delayed fracture 1s stress-rupture failure, which occurs
when a metal has been statically loaded at an elevated temperature for a long
period of time. Depending upon the stress and the temperature there may be no
yielding prior to fracture. A similar type of delayed fracture, in which there is no
warning by yielding prior to failure, occurs at room temperature when steel 1s
statically loaded in the presence of hydrogen.

All engineering materials show a certain variability in mechanical properties,
which in turn can be influenced by changes in heat treatment or fabrication.
Further, uncertainties usually exist regarding the magnitude of the applied loads,
and approximations are usually necessary in calculating stresses for all but the
most simple member. Allowance must be made for the possibility of accidental
loads of high magnitude. Thus, in order to provide a margin of safety and to
protect against faillure from unpredictable causes, it is necessary that the allow-
able stresses be smaller than the stresses which produce failure. The value of stress
for a particular material used in a particular way which is considered to be a safe
stress 1s usually called the working stress a,,. For static applications the working
stress of ductile metals is usually based on the yield strength o, and for brittle
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metals on the ultimate tensile strength o,. Values of working stress are established
by local and federal agencies and by technical organizations such as the American
Society of Mechanical Engineers (ASME). The working stress may be considered
as either the yield strength or the tensile strength divided by a number called the
factor of safety.

0, c

a, N, or o, =~ (1-5)
where o, = working stress

0,= yield strength

o, = tensile strength

N, = factor of safety based on yield strength

N = factor of safety based on tensile strength

The value assigned to the factor of safety depends on an estimate of all the
factors discussed above. In addition, careful consideration should be given to the
consequences, which would result from failure. If failure would result in loss of
life, the factor of safety should be increased. The type of equipment will also
influence the factor of safety. In military equipment, where light weight may be a
prime consideration, the factor of safety may be lower than in commercial
equipment. The factor of safety will also depend on the expected type of loading.
For static loading, as 1n a building, the factor of safety would be lower than in a
machine, which 1s subjected to vibration and fluctuating stresses.

1-8 CONCEPT OF STRESS AND THE TYPES OF STRESSES

Stress 1s defined as force per unit area. In Sec. 1-4 the stress was considered to be
uniformly distributed over the cross-sectional area of the member. However, this
i1s not the general case. Figure 1-5a represents a body in equilibrium under the
action of external forces P, P,,..., P.. There are two kinds of external forces
which may act on a body: surface forces and body forces. Forces distributed over
the surface of the body, such as hydrostatic pressure or the pressure exerted by
one body on another, are called surface forces. Forces distributed over the volume
of a body, such as gravitational forces, magnetic forces, or inertia forces (for a
body 1in motion), are called body forces. The two most common types of body
forces encountered in engineering practice are centrifugal forces due to high-speed
rotation and forces due to temperature differential over the body (thermal stress).
In general the force will not be uniformly distributed over any cross section
of the body illustrated 1in Fig. 1-54. To obtain the stress at some point O in a
plane such as mm, part 1 of the body is removed and replaced by the system of
external forces on mm which will retain each point in part 2 of the body in the
same position as before the removal of part 1. This 1s the situation in Fig. 1-3b.
We then take an area A A surrounding the point O and note that a force AP acts
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Figure 1-5 («) Body in equilibrium under action of external forces Py,..., Ps; (b) forces acting on

parts.

on this area. If the area A A4 is continuously reduced to zero, the limiting value of
the ratio AP /A A 1s the stress at the point O on plane mm of body 2.

lim — = 1-6
m —— (1-6)

The stress will be in the direction of the resultant force P and will generally be
inclined at an angle to AA4. The same stress at point O in plane mm would be
obtained if the free body were constructed by removing part 2 of the solid body.
However, the stress will be different on any other plane passing through point O,
such as the plane nn.

It 1s inconvenient to use a stress which 1s inclined at some arbitrary angle to
the area over which 1t acts. The total stress can be resolved into two components,
a normal stress o perpendicular to AA, and a shearing stress (or shear stress) 7
lying in the plane mm of the area. To illustrate this point, consider Fig. 1-6. The
force P makes an angle § with the normal z to the plane of the area A. Also, the
plane containing the normal and P intersects the plane A4 along a dashed line that

Figure 1-6 Resolution of total stress into its compo-
nents.
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makes an angle ¢ with the y axis. The normal stress 1s given by

P
0 = — cos 0 (1-7)

The shear stress in the plane acts along the line OC and has the magnitude

P
= sin ¢ (1-8)

This shear stress may be further resolved into components parallel to the x and y
directions lying the plane.

P
x direction = sin @ sin ¢ (1-9)
™ - P .
y direction r=—_sin 6 cos ¢ (1-10)

Therefore, in general a given plane may have one normal stress and two shear
stresses acting on it.

1-9 CONCEPT OF STRAIN AND THE TYPES OF STRAIN

In Sec. 1-4 the average linear strain was defined as the ratio of the change in
length to the original length of the same dimension.
6 AL L - L,

e — e
LO LO LO

where e= average linear strain
6 = deformation

By analogy with the definition of stress at a point, the strain at a point 1s the ratio

of the deformation to the gage length as the gage length approaches zero.
Rather than referring the change in length to the original gage length, it often

1s more useful to define the strain as the change in linear dimension divided by

the instantaneous value of the dimension.

Lf d_L B Lf

In — (1-11)

8: —_—
Ly L LO

The above equation defines the natural, or true, strain. True strain, which is
useful 1in dealing with problems in plasticity and metal forming, will be discussed
more fully in Chap. 3. For the present it should be noted that for the very small
strains for which the equations of elasticity are vahd the two definitions of strain
give 1dentical values. _

Not only will the elastic deformation of a body result in a change in length of

a linear element in the body, but it may also result in a change in the initial angle
A
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between any two lines. The angular change in a right angle 1s known as shear
strain. Figure 1-7 illustrates the strain produced by the pure shear of one face of a
cube. The angle at A, which was originally 90°, 1s decreased by the application of
a shear stress by a small amount 6. The shear strain y is equal to the displace-
ment a divided by the distance between the planes, 4. The ratio ¢/ 1s also the
tangent of the angle through which the element has been rotated. For the small
angles usually involved, the tangent of the angle and the angle (in radians) are
equal. Therefore, shear strains are often expressed as angles of rotation.

a

Y == tanfd = 0 (1-12)

1-10 UNITS OF STRESS AND OTHER QUANTITIES

The International System of Units, usually called SI (for Systéme International),
1s followed in this book and is summarized in Appendix A. There are seven base
SI units for measuring quantities, namely meter (m) for length, kilogram (kg) for
mass, second (s) for time, ampere (A) for electric current, kelvin (K) for thermo-
dynamic temperature, mole (mol) for amount of a substance, and candela (cd) for
luminous intensity. All other units are derived from these.

Some of the derived units have special names. For example, frequency is
measured in units of s™! (i.e. per second), and this unit is known as the hertz
(Hz); force is measured in units of m kg s~ (i.e. the force required to accelerate
one kg to an acceleration of one meter per second squared), and this derived unat
1s called the newton (N); stress has dimensions of force per unit area and is
therefore measured in units of N m ™2, which is known as the pascal (Pa). Note
that since the acceleration due to gravity is 9.807 m s~ %, a load of 1 kg exerts a
force of 9.807 N. It can be seen from Appendix A that although different quan-
tities may be expressed in different derived units, the units may be identical when
expressed 1n base units (e.g. stress and energy density).

In order to avoid describing quantities by very large or small numbers explic-
itly, a system of prefixes is used to indicate multiples of a unit (see Appendix A).
For example, a stress of 1 Pa is very small, and most stresses of practical interest
are in the range 10° Pa to 10'' Pa. This range is more conveniently expressed
using multiples as 1 MPa to 100 GPa. Units in a product are separated in this
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book by a space, e.2. MJ m~> not MJm ™?: this is not strictly necessary but is an
aid to clanty.

Finally it should be reemphasized that strain is simply a number. It is a
dimensionless quantity and 1s not expressed in physical units.

Example The shear stress required to nucleate a grain boundary crack in
high-temperature deformation has been estimated to be

37y,G  \'/*
T =
8(1 —»)L

where 7y, is the grain boundary surface energy, let us say 2 J m~*; G is the
shear modulus, 75 GPa; L 1s the grain boundary sliding distance, assumed
equal to the grain diameter 0.01 mm, and v 1s Poisson’s ratio, v = 0.3. To cal-
culate T we need to be sure the units are consistent and that the prefixes have
been properly evaluated.

To check the equation express all units in newtons and meters.

Nm N
x__

ml m2 NZ 1/2 N
r=\ —m—m—m = — =
m m* m?

1/2

Note that a joule (J) 1s a unit of energy; J = N m (see Appendix A)

o 3n x 2 x 75 x 10°
\8(1—-03)x 1072 x 1073

= 15.89 x 10" N m™*
= 1589 MN m™* = 158.9 MPa

1/2
) — (252.4 x 101412
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CHAPTER

- TWO

STRESS AND STRAIN RELATIONSHIPS FOR
ELASTIC BEHAVIOR

2-1 INTRODUCTION

The purpose of this chapter 1s to present the mathematical relationships for
expressing the stress and strain at a point and the relationships between stress and
strain 1n a solid which obeys Hooke’s law. While part of the material covered in
this chapter 1s a review of information generally covered in strength of materials,
the subject 1s extended beyond this point to a consideration of stress and strain in
three dimensions. The material included in this chapter is important for an
understanding of most of the phenomenological aspects of mechanical metallurgy,
and for this reason it should be given careful attention by those readers to whom
- it 15 unfamiliar. In the space available for this subject it has not been possible to
carry 1t to the point where extensive problem solving is possible. The material
covered here should, however, provide a background for intelligent reading of the
more mathematical literature in mechanical metallurgy.

It should be recognized that the equations describing the state of stress or
strain 1n a body are applicable to any solid continuum, whether it be an elastic or
plastic solid or a viscous flmd. Indeed, this body of knowledge is often called
continuum mechanics. The equations relating stress and strain are called constitu-
tive equations because they depend on the material behavior. In this chapter we
shall only consider the constitutive equations for an elastic solid. |

2-2 DESCRIPTION OF STRESS AT A POINT

As described in Sec. 1-8, it is often convenient to resolve the stresses at a point
into normal and shear components. In the general case the shear components are
at arbitrary angles to the coordinate axes, so that it is convenient to resolve each

17
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Figure 2-1 Stresses acting on an ele-
mental cube.

shear stress further into two components. The general case 1s shown 1in Fig. 2-1.
Stresses acting normal to the faces of the elemental cube are identified by the
subscript which also identifies the direction in which the stress acts; that 1s o, 1S
the normal stress acting in the x direction. Since it 1s a normal stress, it must act
on the plane perpendicular to the x direction. By convention, values of normal
stresses greater than zero denote tension; values less than zero indicate compres-
sion. All the normal stresses shown in Fig. 2-1 are tensile.

Two subscripts are needed for describing shearing stresses. The first subscript
indicates the plane in which the stress acts and the second the direction 1n which
the stress acts. Since a plane 1s most easily defined by i1ts normal, the first
subscript refers to this normal. For example, 7, 1s the shear stress on the plane

yz
perpendicular to the y axis in the direction of the z axis. 7, 15 the shear stress on

' X
a plane normal to the y axis in the direction of the x axis.
A shear stress is positive if 1t points in the positive direction on the positive
face of a unit cube. (It 1s also positive if it points in the negative direction on the
negative face of a unit cube.) All of the shear stresses in Fig. 2-2a are positive
shear stresses regardless of the type of normal stresses that are present. A shear
stress 1s negative if it points in the negative direction of a positive face of a unit

cube and vice versa. The shearing stresses shown 1n Fig. 2-2bh are all negative
stresses.

Ty | Ty
+— ——
k A
—X 1 +4X — X 1 +X
1 |
~J -y Figure 2-2 Sign convention for shear

(@) (D) stress. (a) Positive; (b) negative.
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The notation for stress given above is the one used by Timoshenko' and most
American workers in the field of elasticity. However, many other notations have
been used, some of which are given below.

o, 0y X, XX Pix
O, On Yy ;; Pyy
g, 033 Z z ;‘; P::
Txy O12 X, ;; Pxy
Tyz 033 Yz :;E 4 yz

i

T 0y, 2 ZXx p,,

X

It can be seen from Fig. 2-1 that nine quantities must be defined in order to
establish the state of stress at a point. They are o,, 0,, 6,, 7,,, T2 T s Tors
and 7,,. However, some simplification is possible. If we assume that the areas of
the faces of the unit cube are small enough so that the change in stress over the
face 1s negligible, by taking the summation of the moments of the forces about the

z axis 1t can be shown that 7,

(gyAyAz)Ax

= Ty,

('Tyx AxAz)Ay (2:1)

e |
|

T

Xy yX
and 1n like manner
Tz = Tzx Tyz = sz

Thus, the state of stress at a point i1s completely described by six components:

three normal stresses and three shear stresses, 0,,0,,0,, 7, ,, 7,,, T,,-

2-3 STATE OF STRESS IN TWO DIMENSIONS (PLANE STRESS)

Many problems can be simplified by considering a two-dimensional state of
stress. This condition is frequently approached in practice when one of the
dimensions of the body 1s small relative to the others. For example, in a thin plate
loaded in the plane of the plate there will be no stress acting perpendicular to the
surface of the plate. The stress system will consist of two normal stresses o, and
o, and a shear stress 7, ,- A stress condition in which the stresses are zero in one
of the primary directions is called plane stress.

Figure 2-3 1llustrates a thin plate with its thickness normal to the plane of the
paper. In order to know the state of stress at point O in the plate, we need to be
able to describe the stress components at O for any orientation of the axes
through the point. To do this, consider an oblique plane normal to the plane of
the paper at an angle § between the x axis and the outward normal to the oblique
plane. Let the normal to this plane be the x’ direction and the direction lying in

g P Timoshenko, and J. N. Goodier, “Theory of Elasticity,” 2d ed., McGraw-Hill Book
Company, New York, 1951.
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canll ¢

Figure 2-3 Stress on oblique
plane (two dimensions).

the oblique plane the y” direction. It 1s assumed that the plane shown in Fig. 2-3
is an infinitesimal distance from O and that the element 1s so small that variations
in stress over the sides of the element can be neglected. The stresses acting on the
oblique plane are the normal stress ¢ and the shear stress 7. The direction cosines
between x’ and the x and y axes are [/ and m, respectively. From the geometry of
Fig. 2-3, / = cos @ and m = sin@. If A is the area of the oblique plane, the areas
of the sides of the element perpendicular to the x and y axes are A/ and Am.

Let S, and S, denote the x and y components of the total stress acting on
the inclined face. By taking the summation of the forces in the x direction and
the y direction, we obtain

S;A =04l + 1, ,Am
S,A=0,Am + 7, Al
or ' S, =0,cosf + 7, sinf

§,=o0,sinf + 7, cosd

The components of S, and S, in the direction of the normal stress o are

Sy =238,c088 and S, =5, sinf

so that the normal stress acting on the oblique plane 1s given by
o, =S,cos88 + S, siné

. ‘ (2-2)
0, = 0,c08° 0 + o, sin” 0 + 27, sinf cos b
The shearing stress on the obhique plane 1s given by
Ty = 8,080 — §, sind
2 » 2 . (2_3)
Tey = Ty, (C0s* 8 — sin®f) + (o, — 0,) sinf cos 8

The stress o,, may be found by substituting 6 + = /2 for § in Eq. (2-2), since o,

1s orthogonal to o,..
0, = o cos’ (0 + w/2) + o, sin® (8 + w/2) + 27, sin (0 + 7/2) cos (8 + m/2)
and since sin(f8 + 7/2) = cos § and cos(8 + 7/2) = —sinf, we obtain

_ . ) 2 _ -
6,=o0,8n"8+ag,cos"0 — 27 sinbcosb (2-4)
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Equations (2-2) to (2-4) are the transformation of stress equations which give the
stresses I an x’y’ coordinate system if the stresses in an xy coordinate system
and the angle # are known.

To aid in computation, it 1s often convenient to express Eqs (2- 2) to (2-4) i in
terms of the double angle 26. This can be done with the following identities:

cos28 + 1
cos” f =
| 2
o, 1 — cos28
sin“ @ = 5

2sinfcos@ = sin26
_ cos2 8 — sin? @ = cos 24
The transformation of stress equations now become
o, T 0 0, — O,

O =~ >+ 5 08 20 + 7., 8126 (2-5)
o,t+o, o0, ,—0, _
% = 5 cos 20 — 7., sin20 (2-6)
Uy o Ux .
Tey = — 5 Sin 20 + 7,,cos26 (2-7)

[t 18 important to note that ¢, + 6, = 6, + o,. Thus the sum of the normal
stresses on two perpendicular planes 1s an mvarzant quantity, that 1s, 1t 1s
independent of orientation or angle 6.

Equations (2-2) and (2-3) and their equivalents, Egs. (2-5) and (2-7), descnbe
the normal stress and shear stress on any plane through a point in a body
subjected to a plane-stress situation. Figure 2-4 shows the varation of normal
stress and shear stress with 8 for the biaxial-plane-stress situation given at the top

of the figure. Note the following important facts about this figure:

1. The maximum and minimum values of normal stress on the oblique plane
through point O occur when the shear stress is zero.

2. The maximum and minimum values of both normal stress and shear stress
occur at angles which are 90° apart.

3. The maximum shear stress occurs at an angle halfway between the maximum
and minimum normal stresses.

4. The variation of normal stress and shear stress occurs in the form of a sine

wave, with a period of = 180°. These relationships are valid for any state of
stress.

For any state of stress 1t 1s always possible to define a new coordinate system
which has axes perpendicular to the planes on which the maximum normal
stresses act and on which no shearing stresses act. These planes are called the
principal planes, and the stresses normal to these planes are the principal stresses.
For two-dimensional plane stress there will be two principal stresses o, and o,
which occur at angles that are 90° apart (Fig. 2-4). For the general case of stress
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Figure 2-4 Variation of normal stress and shear stress on oblique plane with angle 8.

in three dimensions there will be three principal stresses o,, 0,, and o,. According
to convention, o, 1s the algebraically greatest principal stress, while o; 1s the
algebraically smallest stress. The directions of the principal stresses are the
principal axes 1, 2, and 3. Although in general the principal axes 1, 2, and 3 do
not coincide with the cartesian-coordinate axes x, y, z, for many situations that
are encountered in practice the two systems of axes coincide because of symmetry
of loading and deformation. The specification of the principal stresses and their
direction provides a convenient way of describing the state of stress at a point.

Since by definition a principal plane contains no shear stress, its angular

relationship with respect to the xy coordinate axes can be determined by finding
the values of ¢ 1n Eq. (2-3) for which 7., = 0. "

r.,(cos>§ — sin?8) + (o, — 6,) sinfcos § = 0

T, sin # cos @ I(sin28) 1
= — S = = — tan 2§
6, — 0, ¢cos"f —sin“f cos 26 2
27,
tan26 = (2-8)
o, — O

A Y
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Since tan 26 = tan(7 + 28), Eq. (2-8) has two roots, §, and 6, =6, + n7/2.
These roots define two mutually perpendicular planes which are free from shear.

Equation (2-5) will give the principal stresses when values of cos26# and
sin 28 are substituted into it from Eq. (2-8). The values of cos 26 and sin 28 are
found from Eq. (2-8) by means of the pythagorean relationships.

T

sin26 = + a4 1
o / /2
(0, — 0,)° /8 + 72|
c.— 0. )/2
cos28 = (o, y)/

(0, — 0,78+ 2]

Substituting these values into Eq. (2-5) results in the expression for the maximum
and minimum principal stresses for a two-dimensional (biaxial) state of stress.

Umax=01{= Ux+0y+ [(ax-—oy)Z_l_Tz 1/2
+ o

Umin — U2 2 2

(2-9)

The direction of the principal planes 1s found by solving for # 1n Eq. (2-8),
taking special care to establish whether 26 1s between 0 and #/2, 7, and 37 /2,
etc. Figure 2-5 shows a simple way to establish the direction of the largest
principal stress o,. o, will liec between the algebraically largest normal stress and
the shear diagonal. To see this intuitively, consider that if there were no shear
stresses, then o, = a,. If only shear stresses act, then a normal stress (the principal
stress) would exist along the shear diagonal. If both normal and shear stresses act
on the element, then o, lies between the influences of these two effects.

To find the maximum shear stress we return to Eq. (2-7). We differentiate the
expression for 7., and set this equal to zero.

de'y’ .
TR (0, — 0,)cos20 — 27,,sin26 = 0
o, — O, o, — O, (2'10)
tan26_ = =
2frxy 2*rxy

Comparing this with the angle at which the principal planes occur, Eq. (2-8),
tan26, = 27, ,/(0, — 0,), we see that tan 26, is the negative reciprocal of tan 24,

o
Shear
diagonal
Figure 2-5 Method of establishing direction of g,
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This means that 26_ and 26, are orthogonal, and that 6, and @, are separated 1n

space by 45°. The magnitude of the maximum shear stress is found by substitut-
ing Eqg. (2-10) into Eq. (2-7).

o, —0,\2 |
- il( : ) ‘1l (2-11)

Example The state of stress 1s given by 6, = 25p and o, = 5p plus shearing
stresses 7, ,. On a plane at 45° counterclockwise to the plane on which g, acts
the state of stress is 30 MPa tension and 5 MPa shear. Determine the values
of 0,,0,7,,.

From Egs. (2-5) and (2-7)

o, T o, 6, — O, _
0 = | S cos 20 + 1,,sin20  Eq. (2-5)

29p+5p  25p — 5p

50 X 10° = > | ; cos 90° + 1, sin 90°

15p + 7., = 50 x 10° Pa

U_]—’ o Ux .
Tey = 75 SIn 20 + 7, ,cos26 Eq. (2-7)
Sp — 25
5 X 10° = ( P p)sin90° + 7.,€08 90

—10p=5x10° p= —5x10°Pa
o =25(-5x%x10°) = —12.5 MPa
0, = 5(p) = —2.5MPa

7, = 50 X 10° — 15(—5 X 10°)

= 50 X 10® + 7.5 X 10° = 57.5 MPa

We also can find g, orthogonal to o,, = 50 MPa, since o, + 6, =0,. + 0,

~12.5-2.5=50 + 0,

Uyr — _65 MP&

2-4 MOHR’S CIRCLE OF STRESS—TWO DIMENSIONS

A very useful graphical method for representing the state of stress at a point on
an oblique plane through the point was suggested by O. Mohr. The transforma-



STRESS AND STRAIN RELATIONSHIPS FOR ELASTIC BEHAVIOR 25

tion of stress equations, Eqs. (2-5) and (2-7), can be rearranged to give

X

O'x+0'y o, — O, _
o, — = cos20 + 7., sin26

g, — 0, |,
Tyx = 7 sin26 + 7,,cos26

We can solve for o,, in terms of 7., by squaring each of these equations and
adding

o, + 0 \? 0, — 0,\?
(ax,— ; y) -I—Tf.-y,:( y) + 12 (2-12)

Equation (2-12) is the equation of a circle of the form (x — 4)* + y* = r*. Thus,
Mohr’s circle is a circle in 6, 7., coordinates with a radius equal to 7,,,, and the
center displaced (o, + 0,)/2 to the right of the origin.

In working with Mohr’s circle there are only a few basic rules to remember.
An angle of 8 on the physical element is represented by 26 on Mohr’s circle. The
same sense of rotation (clockwise or counterclockwise) should be used in each
case. A different. convention to express shear stress 1s used in drawing and
interpreting Mohr’s circle. This convention 1s that a shear stress causing a
clockwise rotation about any point in the physical element is plotted above the
horizontal axis of the Mohr’s circle. A point on Mohr’s circle gives the magnitude
and direction of the normal and shear stresses on any plane in the physical
element.

Figure 2-6 illustrates the plotting and use of Mohr’s circle for a particular
stress state shown at the upper left. Normal stresses are plotted along the x axis,

shear stresses along the y axis. The stresses on the planes normal to the x and y

o]

T e
\

/ﬂ-1
%
f

-r'r-._...J r—a—- Ty D‘.l /

G2

Figure 2-6 Mohr’s circle for two-
dimensional state of stress.
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axes are plotted as points A and B. The intersection of the line AB with the o
axis determines the center of the circle. At points D and E the shear stress is
zero, so these points represent the values of the principal stresses. The angle
between o, and ¢, on Mohr’s circle 1s 26. Since this angle is measured counter-
clockwise on Mohr’s circle on the physical element, o, acts counterclockwise from
the x axis at an angle 6 (see sketch, upper right). The stresses on any other plane
whose normal makes an angle of # with the x axis could be found from Mohr’s
circle in the same way.

2-5 STATE OF STRESS IN THREE DIMENSIONS

The general three-dimensional state of stress consists of three unequal principal
stresses acting at a point. This is called a triaxial state of stress. If two of the three
principal stresses are equal, the state of stress 1s known as cylindrical, while 1f all
three principal stresses are equal, the state of stress 1s said to be hydrostatic, or
spherical.

The determination of the principal stresses for a three-dimensional state of
stress 1n terms of the stresses acting on an arbitrary cartesian-coordinate system 1s
an extension of the method described in Sec. 2-3 for the two-dimensional case.
Figure 2-7 represents an elemental free body similar to that shown in Fig. 2-1
with a diagonal plane JKL of area A. The plane JKL is assumed to be a
principal plane cutting through the unit cube. ¢ 1s the principal stress acting
normal to the plane JKL. Let [, m, n be the direction cosines of o, that 1s, the
cosines of the angles between o and the x, y, and z axes. Since the free body in
Fig. 2-7, must be in equilibrium, the forces acting on each of its faces must

Figure 2-7 Stresses acting on elemental free
o body.
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balance. The components of o along each of the axes are S, S, and §,.
S. = ol ' S, = om S, = on

Area KOL = Al Area JOK = Am Area JOL = An

Taking the summation of the forces 1in the x direction results in
oAl — o, Al — 1, Am — 1, An = ()

which reduces to

(0 — 0 ) — T,xm — 7,,n =70 , (2-13a)

Summing the forces along the other two axes results in
— Tl + (0 — r:ry)m —7,n=10 (2-13b)
— T —T,m+ (60 —0,)n=0 (2-13¢)

Equations (2-13) are three homogeneous linear equations in terms of [, m,
and n. The only nontrivial solution can be obtained by setting the determinant of
the coethicients of /, m, and »n equal to zero, since /, m, and n cannot all be zero.

g — 0, _Tyx — Tix
“"“Txy g — Uy —'sz p— O
Ty _Tyz 0 — 0

Solution of the determinant results in a cubic equation 1n o.

3 2 2 22 2
o (o, + o, + 0,)o° + (axoy + 00,00, — 7, T, 'rxz)a

—(UUU + 27, 7.7 —.072—072—01‘2):0 (2-14)

x“yz xy'yz'xz x'yz yixz Z'Xy

The three roots of Eq. (2-14) are the three principal stresses o,, 0,, and o,. To
determine the direction, with respect to the original x, y, z axes, in which the
principal stresses act, it 1s necessary to substitute, o,, 0,, and o, each in turn into
the three equations of Eq. (2-13). The resulting equations must be solved
simultaneously for I, m, and »n with the help of the auxiliary relationship
I+ m? + n?=1.

Note that there are three combinations of stress components in Eq. (2-14)
that make up the coefficients of the cubic equation. Since the values of these
coefficients determine the principal stresses, they obviously do not vary with
changes in the coordinate axes. Therefore, they are invariant coeflicients.

o,+o,+o0,=1

| 2 22
00, +00, +00, —7,, —T,—T,= 1,
_ 2 P
0,00, + 27, yeTez — 0,7, — 0T, — 0,17, I,

The first invariant of stress I; has been seen before for the two-dimensional state
of stress. It states the useful relationship that the sum of the normal stresses for
any orientation in the coordinate system 1s equal to the sum of the normal stresses
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for any other orientation. For example

o, t0o,+0,=0,+0,+0,=0; 10, + 0y (2-15)

Example Determine the principal stresses for the state of stress

0 —240 0
— 240 200 0 | MPa
0 0 —280

From Eq. (2-14)
63 — (200 — 280)0? + [(200)(—280) — (—240)’| 0 — (—280)(—240)" = 0

o = —280 MPa is a principal stress because 7,, =7, =0and 7,, =7, =0

(o — (=280)]yo® — I,0% + Lo — I, = 6% — 2000 — (240)’

200 + [(—200)” + 4(240)*] *

2
o6, = 360 MPa;  o,= —160 MPa; 0, = —280 MPa

= 100 + 260

g

In the discussion above we developed the equation for the stress on a
particular oblique plane, a principal plane in which there 1s no shear stress. Let us
now develop the equations for the normal and shear stress on any oblique plane
whose normal has the direction cosines /, m, n with the x, y, z axes. We can use
Fig. 2-7 once again if we realize that for this general situation the total stress on
the plane S will not be coaxial with the normal stress, and that S? = 0% + 1°.
- Once again the total stress can be resolved into components S, S, S,, so that

xX? y}

S?=8;+8>+8; (2-16)

Taking the summation of the forces in the x, y, and z directions, we arrive at the
expressions for the orthogonal components of the total stress:

S,=ol+71,m+r1,n (2-17a)
=T, Fom+ 1 n (2-17b)
S, =1 +71,m+o,n (2-17¢)

To find the normal stress ¢ on the oblique plane, it is necessary to determins

the components of §,, S, S, in the direction of the normal to the oblique plane.
Thus,

6 =S8,/+85m+ §n

or, after substituting from Eqgs. (2-17) and simplifying with 7, , = 7, etc.

o=0l"+ cr);m2 + o,n* + 27, dm + 27, mn + 271, nl (2-18)

N
a2 - F = . - - - - - - - - ' - - -
.'th‘i:ﬁ:i'.‘_.ﬂ.-,q-;. S, T TR T P A UL S N R R A 1 . . R [ L . Do B e e .

o eeringl
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The magnitude of the shear stress on the oblique plane can be found from
72 = S? — 0% To get the magnitude and direction of the two shear stress
components lying in the oblique plane 1t 1s necessary to resolve the stress
components S,, S,, S, into the »” and z’ directions lying in the oblique plane.’
This development will not be carried out here because the pertinent equations can
be derived more easily by the methods given in Sec. 2-6. _

Since plastic flow involves shearing stresses, 1t 1s important to identify the
planes on which the maximum or principal shear siresses occur. In our discussion
of the two-dimensional state of stress we saw that 7. occurred on a plane
halfway between the two principal planes. Therefore it 1s easiest to define the
principal shear planes in terms of the three principal axes 1,2,3. From 7° =
S$? — 62 it can be shown that

T = (01 — 02)212’“2 + (‘5'1 "" 03)212”2 + (Uz — 03)2””2”2 (2'19)

where [, m, n are the direction cosines between the normal to the oblique plane
and the principal axes.

The principal shear stresses occur for the following combinations of direction
cosines that bisect the angle between two of the three principal axes:

/ m 7 T
1 1 0, — Oy
0 t/> Yz m=
Va2 T2 T
1 0 1 c, — 0, (2-20)
11/ = ty - m=
=V 2 V2 T2
1 1 6, — O
£ty Y=z 0 m=——
2 2 2

Since according to convention o, is the algebraically greatest principal normal
stress and o, 1s the algebraically smallest principal stress, 7, has the largest value
of shear stress and it is called the maximum shear stress t_,. .

0; — 04

T = (2-21)

inax 2

The maximum shear stress is important in theories of yielding and metal-forming
operations. Figure 2-8 shows the planes of the principal shear stresses for a cube
whose faces are the principal planes. Note that for each pair of principal stresses
there are two planes of principal shear stress, which bisect the directions of the
principal stresses.

' P. C. Chou and N. J. Pagano, “Elasticity,” p. 24, D. Van Nostrand Company, Inc., Princeton,
N.J., 1967
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Figure 2-8 Planes of principal shear stresses.

2-6 STRESS TENSOR

Many aspects of the analysis of stress, such as the equations for the transforma-
tion of the stress components from one set of coordinate axes to another
coordinate system or the existence of principal stresses, become simpler when 1t 1s
realized that stress 1s a second-rank tensor quantity. Many of the techniques for
‘manipulating second-rank tensors do not require a deep understanding of tensor
calculus, so 1t 1s advantageous to learn something about the properties of tensors.
We shall start with the consideration of the transformation of a vector (a
first-rank tensor) from one coordinate system to another. Consider the vector
S = 8,i; + 85,i, + §5i;, when the unit vectors i, 7,,i; are in the directions
X{, X4, X5. (In accordance with convention and convenience in working with
tensor quanttties, the coordinate axes will be designated x,, x,, etc., where x; 1s
equivalent to our previous designation x, x, is equivalent to the old y, etc.)
51, S,, §; are the components of S referred to the axes x, x,, x;. We now want
to find the components of S referred to the x{, x5, x} axes, Fig. 2-9. §/ 1s
obtained by resolving S, S,, S, along the new direction x]. |

S = S;cos(x;x}) + S,co8(x,x]) + Syco8(x53x])

or S = a8y + a,,8, + a;35; (2-22a)

where a,, 1s the direction cosine between x| and x,, a,, is the direction cosine
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Figure 2-9 Transformation of axes for a vector.

between x] and x,, etc. Similarly, _,
S = a8 + a,S, + a5, (2-22b)
S;=a,;S, + ay,$S, + a,S, (2-22¢)

We note that the leading suffix for each direction cosine in each equation 1s the
same, so we could write these equations as

3 3 3
51 = E a, ;S; S) = )3 a;S, S; = )3 as;s,;
j=1 j=1 j=1
These three equations could be combined by writing
3
S/ =2 a,;S(i=1,2,3)=a,8 +a,S, + asS,; (2-23)
j=1

Still greater brevity i1s obtained by writing Eq. (2-23) in the FEinstein suffix
notation

S/ =a,$, (2-24)

The suffix notation is a very useful way of compactly expressing the systems of
equations usually found in continuum mechanics. In Eq. (2-24) 1t 1s understood
that when a suffix occurs twice in the same term (in this case the suffix j), it
indicates summation with respect to that suffix. Unless otherwise indicated, the
summation of the other index 1s from 1 to 3.

In the above example, i 1s a free suffix and it 1s understood that in the
expanded form there is one equation for each value of i. The repeated index is
called a dummy suffix. Its only purpose is to indicate summation. Exactly the
same three equations would be produced if some other letter were used for the
dummy suffix, for example, S/ = 4, S. would mean the same thing as Eq. (2-24).

We saw in Sec. 2-5 that the complete determination of the state of stress at a
point in a solid requires the specification of nine components of stress on the
orthogonal faces of the element at the point. A vector quantity only requires the

specification of three components. Obviously, stress is more complicated than a
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vector. Physical quantities that transform with coordinate axes in the manner of
Eq. (2-18) are called tensors of the second rank. Stress, strain, and many other
physical quantities are second-rank tensors. A scalar quantity, which remains
unchanged with transformation of axes, requires only a single number for its
specification. Scalars are tensors of zero rank. Vector quantities require three
components for their specification, so they are tensors of the first rank. The
number of components required to specify a quantity 1s 37, where » 1s the rank of
the tensor.! The elastic constant that relates stress with strain in an elastic solid is
a fourth-rank tensor with 81 components in the general case.

Example The displacements of points in a deformed elastic solid (u) are
related to the coordinates of the points (x) by a vector relationship u, = e, x .
Expand this tensor expression. _

Since j 1s the dummy suffix, summation will take place over j = 1, 2, 3.

Uy, = Eeljxj = e X T €X); T ey3X;
Uy = Zezjxj = €51X1 T €3X; T €53X;
Uy = Eey-x;‘ = €31X) T €3X; T €33X;

The coefficients in these equations are the components of the strain tensor.

The product of two vectors A and B having components (A4, 4,, A;) and
(B, B,, B;) results in a second-rank tensor 7;,. The components of this tensor
can be displayed as a 3 X 3 matnx. |
Iy, Ty, T 4,8, A\B, AB;
T;-J,- =1y Tn Ty 4,8, A,B, A,B,

I3 13 T3 A;B,  A3B, A;B;

On transformation of axes the vector components become (A}, 4%, A%) and
(B1, B;, B;). We wish to find the relationship between the nine components of 7,
and the nine components of 7’ after the transformation of axes.

Al =a. A. B, = a,,B,

ij4%
Or - AiB) = (afjAj)(ak!Bl) (2-25)
ik = ar‘jak.’j}

Since stress 1s a second-rank tensor, the components of the stress tensor can
be written as

011 O 0Op3 O Txy Tz
0, =91 On Opi=|Tx 9% T
031 03, O3 T.x Tz O

! A more precise relationship is N = k", where N is the number of components required for tk -
description of a tensor of the nth rank in a k-dimensional space. For a two dimensional space only
four components are required to describe a second-rank tensor.

1
PPN o 1 T ST T IY I]
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The transformation of the stress tensor o, from the x,, x,, x; system of axes to
the x{, x5, x} axes 1s given by

Op; = Ay;8,;0;; S (2-26)

where i and j are dummy suffixes and k& and / are free suffixes. To expand the
tensor equation, we first sum over j = 1, 2, 3.

G,y = 0,,a710, T Q,,4,70,5 + ;0,504

Now summing over { = 1,2,3

Oy = 4,30/011 T Q14,5015 T ;14,303

t+a,,a,0, t a,,0,,0, + a,,3,30,;
+ 44,3470,y t 4;43G0,503, T A, 30,3033 (2'27)

For each value of k and / there will be an equation similar to (2-27). Thus, to find
the equation for the normal stress in the x{ direction, let k =1 and / =1

011 = @11411011 T 41301501, T @114430)3
Ta1,8110y; T d1501505; T 415313053

T ay341103; T 41341503, T 413013033

The reader should venify that this reduces to Eq. (2-18) when recast in the
symbolism of Sec. 2-5.

Similarly, if we want to determine the shear stress on the x’ plane in the z’
direction, that1s, 7., let k =1 and / = 3 |

X'z
013 = 41431017 T 41143,01; T+ 411303303
+a,,a40y + a,,43,05, T Ay;0330,;

+a,3a3103) T Q130303 T G13333033

It 1s perhaps worth emphasizing again that it 1s immaterial what letters are
used for subscripts in tensor notation. Thus, the transformation of a second-rank
tensor could just as well be wntten as T} =a,,a,T, 6 where T  are the
components in the original unprimed axes and T’ are the components referred to

the new primed axes. The transformation law for a third-rank tensor is written
1, =a,ua,5.a,6l

Sty sp“rg”tortpgr

- The material presented so far in this section 1s really little more than tensor
notation. However, even with the minimal topics that have been discussed we
have gained a powerful shorthand method for writing the often unwieldy equa-
tions of continuum mechanics. (The student will find that this will greatly ease the
problem of remembering equations.) We have also gained a useful technique for
transforming a tensor quantity from one set of axes to another. There are only a
few additional facts about tensors that we need to consider. The student inter-
ested in pursuing this topic further is referred to a number of applications-
oriented texts on cartesian tensors.

Y L. G. Jaeger, “Cartesian Tensors in Engineering Science,” Pergamon Press, New York, 1966.
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A useful quantity in tensor theory 1s the Kronecker delta §,,. The Kronecker
delta is a second-rank unit isotropic tensor, that 1s, it has identical components 1n
any coordinate system.

1
0 i+

]

J
‘ 2-28
/ (2-28)

1]

— D D
|

1
5.=10
0

o -

Multiplication of a tensor or products of tensors by 6, result in a reduction of
two 1n the rank of the tensor. This is called contraction of the tensor. The rule 1s
stated here without proof but examples are given so we can make use of this
operation in subsequent discussions. Consider the product of two second-rank
tensors A, B, . This multiphcation would produce a fourth-rank tensor, nine
equations each with nine terms. If we multiply the product by 9, , 1t 1s reduced to
a second-rank tensor.

gw?

A,.B,.8

vwgw

=A4,,B,,

The “rule” 1s, replace w by ¢ and drop 6_,,. The process of contraction can be
repeated several times. Thus, 4 B 0 .0, reduces to 4, B o, on the first
contraction, and then to 4, B, , which is a zero-rank tensor (scalar).

If we apply contraction to the second-rank stress tensor

U:’jafj =0, = 0, + 0y + 033=1

we obtain the first invariant of the tensor (a scalar).
The invariants of the stress tensor may bé determined readily from the matrix
of 1ts components. Since o,, = 0,,, etc., the stress tensor 1s a symmetric tensor.

i)

The first invanant 1s the trace of the matrix, 1.e., the sum of the main diagonal
terms

I, =0, + 0yt 033

The second invariant 1s the sum of the principal minors. A minor of an element of
a matrix 1s the determinant of the next lower order which remains when the row
and column in which the element stands are suppressed. Thus, taking each of the
principal (main diagonal) terms in order and suppressing that row and column we
have

I, = +

Finally, the third invariant 1s the determinant of the entire matrix of the
components of the stress tensor.

As an example of the advantages of the concepts that are provided by tensor
notation we shall derive again the equations for principal stress that were
developed in Sec. 2-5. The reader 1s warned that it 1s easy to lose the physical

.
MR i i A SNBSS . T .
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significance in the mathematical manipulation. It 1s a basic theorem of tensor
theory that there is some orientation of the coordinate axes such that the
components of a symmetric tensor of rank 2 will all be equal to zero for i # ;.
This 1s equivalent to stating that the concepts of principal stress and principal
axes are inherent in the tensor character of stress.

The three force summation equations, Eqgs. (2-17), can be written as

6. =a,do,, (2-29)

nj nivi)

where the suffix # 1s used to denote that we are dealing with the angles to the
normal of an oblique plane. If we let the oblique plane be a principal plane and
let the normal stress on it be g, then we can write

0, = a,0, (2-30)
Combining Egs. (2-29) and (2-30)
(a,0,—a,0,)=0 (2-31)

But, a,;, = a,,0,, (replace i by j and drop 9;,)

a,0,;— 6,a,0, =0

However, a,; = a,;, since the principal stress lies in the direction of the normal to
the oblique plane, so

(0;,—0a8,)a, =0 (2-32)
Expanding Eq. (2-32) will give the three equations (2-13), since a,, =/, a,, = m,
etc., and o, = 0 when j # i. For Eq. (2-32) to have a nontrivial solution in a,

the determinant of the coefficients must vanish, resulting in

o, — O T T

p Xy X2z
—_ — T g, — 0 T o
‘UU opﬁﬂ\ yX ¥ p yz 0
T, sz g, — Up

which yields the cubic equation Eq. (2-14). The coefficients of this equation in
tensor notation are

I, = o,

— 1
I, = E(Ufk"kf — Uﬂakk}
— 1
Iy = E(zofjcjkokf — 3“5;“7’;;0“ + Un“ﬂ”kk)
The fact that only dummy subscripts appear in these equations indicates the
scalar nature of the invariants of the stress tensor.

2-7 MOHR'’S CIRCLE—THREE DIMENSIONS

The discussion given in Sec. 2-4 of the representation of a two-dimensional state
of stress by means of Mohr’s circle can be extended to three dimensions. Figure
2-10 shows how a triaxial state of stress, defined by the three principal stresses,
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U3

Figure 2-10 Mohr’s circle representation of a three-dimens onal state of stress.

can be represented by three Mohr’s circles. It can be shown' that all possible
stress conditions within the body fall within the shaded area between the circles in
Fig. 2-10.

While the only physical significance of Mohr’s circle 1s that it gives a
geometrical representation of the equations. that express the transformation of
stress components to different sets of axes, it 1S a very convenient way
of visualizing the state of stress. Figure 2-11 shows Mohr’s circle for a number of
common states of stress. Note that the application of a tensile stress o, at right
angles to an existing tensile stress o, (Fig. 2-11c) results in a decrease in the
principal shear stress on two of the three sets of planes on which a principal shear
stress acts. However, the maximum shear stress 1s not decreased from what it
would be for uniaxial tension, although if only the two-dimensional Mohr’s circle
had been used, this would not have been apparent. If a tensile stress 1s applied in
the third principal direction (Fig. 2-11d), the maximum shear stress is reduced
appreciably. For the limiting case of equal triaxial tension (hydrostatic tension)
Mohr’s circle reduces to a point, and there are no shear stresses acting on any
plane in the body. The effectiveness of biaxial- and triaxial-tension stresses in
reducing the shear stresses resuits in a considerable decrease in the ductility of the

material, because plastic deformation 1s produced by shear stresses. Thus, brittle -

fracture i1s invariably associated with triaxial stresses developed at a notch or
stress raiser. However, Fig. 2-11e shows that, if compressive stresses are applied
lateral to a tensile stress, the maximum shear stress is larger than for the case of
either uniaxial tension or compression. Because of the high value of shear stress
relative to the applied tensile stress the material has an excellent opportunity to

' A. Nadai, “Theory of Flow and Fracture of Solids,” 2d ed., pp. 96-98, McGraw-Hill Book
Company, New York, 1950,
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(d)

e 07 ——>

Figure 2-11 Mohr’s circles (three-dimensional) for various states of stress. (@) Uniaxial tension;
(b) uniaxial compression; (¢) biaxial tension; (d) triaxial tension (unequal); (¢) uniaxial tension plus
biaxial compression.

deform plastically without fracturing under this state of stress. Important use is
made of this fact in the plastic working of metals. For example, greater ductility 1s
obtained in extrusion through a die than in simple uniaxial tension because the
reaction of the metal with the die will produce lateral compressive stresses.

i

2-8 DESCRIPTION OF STRAIN AT A POINT

The displacement of points in a continuum may result from rigid-body transla-
tion, rotation, and deformation. The deformation of a solid may be made up of
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Figure 2-12 Displacement of point (. Fig. 2-13 One-dimensional strain.

dilatation, change 1n volume, or distortion, change in shape. Situations involving
translation and rotation are usually treated in the branch of mechanics called
dynamics. Small deformations are the province of elasticity theory, while larger
deformations are treated in the discipiines of plasticity and hydrodynamics. The
equations developed 1n this section are basically geometrical, so that they apply to
all types of continuous media. |

Consider a solid body 1n fixed coordinates, x, y, z (Fig. 2-12). Let a combina-
tion of deformation and movement displace point 0 to O’ with new coordinates
x+u,y+v,z+ w The components of the displacement are u, v, w. The dis-
placement of Q 1s the vector u, = f(u, v,w). If the displacement vector is
constant for all particles in the body then there is no strain. However, in general,
u. 1s different from particle to particle so that displacement is a function of
distance, u;, = f(x,). For elastic solids and small displacements, u. is a linear
function of x., homogeneous displacements, and the displacement equations are
linear. However, for other materials the displacement may not be linear with
distance, which leads to cumbersome mathematical relationships.

To start our discussion of strain, consider a simple one-dimensional case (Fig.
2-13). In the undeformed state points A and B are separated by a distance dx.
When a force is applied in the x direction A moves to A” and B moves to B’.
Since displacement u, in this one-dimensional case, 1s a function of x, B is
displaced slightly more than A since it is further from the fixed end. The normal
strain 1s given by

du
AL A’'B’ — AR dx+:9—;dx-—dx du 233)
T AB dx  9x (2-

For this one-dimensional case, the displacement is given by u = e x. To
generalize this to three dimensions, each of the components of the displacement
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-will be linearly related to each of the three initial coordinates of the point.
U=e,.xX+e.yte,z
v=e,x+e,y+te,z
W = ezxx L ef.'yy R eZEZ

or U, = e,-l,-x;. (2-35)

i

(2-34)

The coefficients relating displacement with the coordinates of the point in the
body are the components of the relative displacement tensor. Three of these terms
can be identified readily as the normal strains.

du v ow (2-36)
e. = —— = e, = — -
o dx ECANNF Y, “ 0z
However, the other six coefficients require further scrutiny.

Consider an element in the xy plane which has been d1st0rted by shearing
stresses (Fig. 2-14). The element has undergone angular distortion. The displace-
ment of points along the line AD 1is parallel to the x axis, but this component of
displacement increases in proportion to the distance out along the y axis. Thus,

referring to Eq. (2-34)

DD’ du )37
“»7 D4 3 ¥ (2-37)
Similarly, for the angular distortion of the x axis
BB’ v 538
T 4B T ox (2-38)

These shear displacements are positive when they rotate a line from one positive
axis towards another positive axis. By similar methods the rest of the components
of the displacement tensor can be seen to be

, du du du
ax dy oz

e.. = ‘:’” z’xy zﬂ = _‘?E. ﬁ ﬁt_;. (2_39)
N I R TR
dw  dw dv
ax E}’- dz
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In general, displacement components such as e, , e, , etc., produce both
shear strain and rigid-body rotation. Figure 2-15 illustrates several cases. Since we
need to identify that part of the displacement that results in strain, 1t 1s important
to break the displacement tensor into a strain contribution and a rotational
contribution. Fortunately, a basic postulate of tensor theory states that any
second-rank tensor can be decomposed into a symmetric tensor and an antisym-
metric (skew-symmetric) tensor.

€ij = %(Eaj + ejf) + %(e:‘j — eji) (2-40)
or e, =&, w; (2-41)
1 [ du, Jdu,
where e, = —| — +—=1 andis called the strain tensor
T2\ dx;  0x, |
1/ du, du,
W, == and 1s called the rotation tensor
T2\ dx;  dx,
du 1{du Jdv 1{du Jw
dx 21dy dx 2 ( dz  dx )
ot ) g a) s 1(d0 o
= X z{y =1 - — — — — — 4+ —
e T Gy T ax dy 2\ 3z " 9y
ZX zZy zz
1/du ow) 1[/dv oJw %
2(32' ax) 2\ 3z dy 3z
(2-42)
0 1{du dv 1/du Jdw
21 dy dx 2 ( dz  dx )
W, x wxy Wy,
. » y 1(80 au) 0 1(30 aw)
W;: = | Tyx vy e | =\ | =~ — - -
J 0w, W, 21dx dy 2\ 0z dy
1 ( dw du) 1/[dw dv 0
2\ dx az) 2\ dy 0z
(2-43)

Note that ¢, 1s a symmetric tensor since &
antisymmetric tensor since , =

deformation 1s said to be irrotational.
By substituting Eq. (2-41) into Eq. (2-35), we get the general displacement

equations

U; = €,:X; +

v

that 1s,

£, thatis, e, , = ¢

B 4

ij%

xzZ?

etc. w;; 18 an

w,,. If o, =0, the

(2-44)

Earlier in Sec. 1-9 the shear strain y was defined as the total angular change

from a right angle. Referring to Fig. 2-15a, y =e,, + e, =

€y T &, = 2¢, .
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Figure 2-15 Some examples of displacement with shear and rotation. (@) Pure shear without rotation;
(b) pure rotation without shear; (¢) simple shear. Simple shear involves a shape change produced by
displacements along a single set of parallel planes. Pure shear involves a shape change produced by
equal shear displacements on two sets of perpendicular planes.

‘This definition of shear strain, v,; = 2e, , 1s called the engineering shear strain.

1j?

du Jdvu
_ + S
Ty Jdy Ox
ow  Ju
-4 2-45
Txz dx 0dz ( )
dw  du
Yyz = dy 0z

This definition of shear strain commonly is used in engineering elasticity. How-
ever, the shear strain defined according to Eq. (2-45) is not a tensor quantity.

Because of the obvious advantages in the transformation of tensors by the
methods discussed in Sec. 2-6, it 1s profitable to use the strain tensor as defined by
Eq. (2-42). Since the strain tensor is a second-rank tensor, it has all of the
properties that have been described earlier for stress. Thus, the strain tensor may
- be transformed from one set of coordinate axes to a new system of axes by

(2-46)

Ert = akfafjerj
For simplicity, equations for strain analogous with those for stress can be written
directly by substituting ¢ for o and y/2 for 7. Thus, the normal strain on an
oblique plane is given by

e=c¢l* + .*3},1*712 + e,n* + Yo dm + v,,mn + v, ,in
\

[Compare the above with Eq. (2-18).]

In complete analogy with stress, it is possible to define a system of coordinate
axes along which there are no shear strains. These axes are the principal strain
axes. For an isotropic body the direction of principal strains coincide with
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principal stress directions.! An element oriented along one of the principal strain
axes will undergo pure extension or contraction without any rotation or shear
strain. The three principal strains are the roots of the cubic equation

e — Ie* + Le — I, =0 (2-47)

E, T E,TE,

where I

1,

I

2 2 2
g€, + €6, + €6, - Hy2 + y2 +v2)

1 2 2 2
13 — 8.a'n:e)/"":"z + %nyyzxyyz — Z(Ex‘yyz + Eszx + Ezyxy)

The directions of the principal strains are obtained from the three equations
analogous to Egs. (2-13)

21(e, — &) + my,, + ny,, =0
ly,, + 2m(sy —€) + ny,, =0
1Y,, + my,, + 2n(e, — &) = 0

Continuing the analogy between stress and strain equations, the equation for the
principal shearing strains can be obtained from Eq. (2-20).

Y1 = €& T &
Ymax — 72 = & — &3 (2-48)

V3 = & — £
In general, the deformation of a solid involves a combination of volume
change and change in shape. Therefore, we need a way to determine how much of
the deformation i1s due to these contributions. The wvolume strain, or cubical
dilatation, 1s the change in volume per unit volume. Consider a rectangular
parallelepiped with edges dx, dy, dz. The volume in the strained condition is

(1 + e X1 +e)1+e,)dxdydz, since only normal strains result in volume
change. The volume strain A 1s

_ (1+¢.)(1 + ey)(l + ¢ )dxdydz — dxdydz
dx dy dz
= (1 + ex)(l + ey)(l +¢e)—1

A

which for small strains, after neglecting the products of strains, becomes
A=e +e, +e, ~ (2-49)

Note that the volume strain is equal to the first invariant of the strain tensor,
A=¢,+e,+¢,=¢ +e+e. We can also define (e, + ¢, +¢,)/3 as the
mean strain or the hydrostatic (spherical) component of strain.

e, +e,+e, gy A

- - K 2-50
“m 3 3 3 - (250)

' For a derivation of this point see C. T. Wang, “Applied Elasticity,” pp. 26-27, McGraw-Hill
Book Company, New York, 1953.
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That part of the strain tensor which 1s involved in shape change rather than
volume change is called the strain deviator €];. To obtain the deviatoric strains, we
simply subtract e, from each of the normal strain components. Thus,

€, 7 &, exy Eyz

€, x 'Ezy | €, = &y

|
ot
¢

|
o
o

(2-51)

yXx 3 yz
. 2e, — &, — &,
sz Ezy 3

The division of the total strain tensor into deviatoric and dilatational strains is
given in tensor notation by

A
3

A
8:‘;‘) + -B—SU- (2-52)

—_ ol —
€, = & + €, = (efj
For example, when ¢, are the principal strains, (i = j), the strain deviators are
€11 = &1 — &, €y = €y — £, €33 = £33 — £,. These strains represent elonga-
tions or contractions along the principal axes that change the shape of the body at
constant volume.

2-9 MOHR’S CIRCLE OF STRAIN

Except in a few cases involving contact stresses, it is not possible to measure
stress directly. Therefore, experimental measurements of stress are actually based
on measured strains and are converted to stresses by means of Hooke’s law and
the more general relationships which are given in Sec. 2-11. The most universal
strain-measuring device is the bonded-wire resistance gage, frequently called the
SR-4 strain gage.' These gages are made up of several loops of fine wire or foil of
special composition, which are bonded to the surface of the body to be studied.
When the body is deformed, the wires in the gage are strained and their electrical
resistance is altered. The change in resistance, which is proportional to strain, can
be accurately determined with a simple Wheatstone-bridge circuit. The high
sensitivity, stability, comparative ruggedness, and ease of application make resis-
tance strain gages a very powerful tool for strain determination.

* For a treatment of strain gages and other techniques of experimental streds analysis see J. W.

Dally, and W. F. Riley, “Experimental Stress Analysis,” 2d ed., McGraw-Hill Book Company, New
York, 1978.
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60° 60°\
/ B \ Figure 2-16 Typical strain-gage
(0) rosettes. (a) Rectangular; () delta.

For practical problems of experimental stress analysis if 1s often important to
determine the principal stresses. If the principal directions are known, gages can
be oriented in these directions and the principal stresses determined quite readily.
In the general case the direction of the principal strains will not be known, so that
it will be necessary to determine the orientation and magnitude of the principal
strains from the measured strains in arbitrary directions. Because no stress can act
perpendicular to a free surface, strain-gage measurements involve a- two-dimen-
sional state of stress. The state of strain 1s completely determined if e, ¢,, and
Y., can be measured. However, strain gages can make only direct readings of
linear strain, while shear strains must be determined indirectly. Therefore, it 1s the
usual practice to use three strain gages separated at fixed angles in the form of a
“rosette,” as in Fig. 2-16. Strain-gage readings at three values of # will give three
simultaneous equations similar to Eq. (2-33) which can be solved for ¢, ¢, and
Y., Ihe two-dimensional version of Eq. (2-47) can then be used to determine the
principal strains.

g9 = €,C08° 0 + ¢,sin’ @ + v, sin f cos 4 (2-53)

A more convenient method of determining the principal strains from strain-
gage readings than the solution of three simultaneous equations in three un-
knowns 1s the use of Mohr’s circle. In constructing a Mohr’s circle representation
of strain, values of linear normal strain ¢ are plotted along the x axis, and the
shear strain divided by 2 1s plotted along the y axis. Figure 2-17 shows the Mohr’s
circle construction' for the generalized strain-gage rosette illustrated at the top of
the figure. Strain-gage readings ¢_, ¢,, and ¢, are available for three gages situated
at arbitrary angles « and B. The objective is to determine the magnitude and
orientation of the principal strains ¢, and e&,.

1. Along an arbitrary axis X’X’ lay off vertical lines aa, bb, and cc correspond-
ing to the strains ¢, ¢, and ¢..

2. From any point on the hne bb (middle strain gage) draw a line DA at an
angle a with bb and intersecting aa at point A. In the same way, lay off DC
intersecting cc at point C. |

' G. Murphy, J. Appl. Mech., vol. 12, p. A209, 1945; F. A. McClintock, Proc. Soc. Exp. Stress
Anal., vol. 9, p. 209, 1951.

. Ry
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N~

Figure 2-17 Mohr’s circle for de-
termination of principal strains.

3. Construct a circle through 4, C, and D. The center of this circle is at O,
determined by the intersection of the perpendicular bisectors to CD and AD.

4. Points A, B, and C on the circle give the values of £ and vy /2 (measured from
the new x_axis through O) for the three gages.

5. Values of the principal strains are determined by the intersection of the circle

with the new x axis through O. The angular relationship of ¢, to the gage a is
one-half the angle AOP on the Mohr’s circle (AOP = 28).

25-10 HYDROSTATIC AND DEVIATOR COMPONENTS OF STRESS

Having introduced the concept that the strain tensor can be divided into a
hydrostatic or mean strain and a strain deviator, it is important to consider the
physical significance of a similar operation on the stress tensor. The total stress
tensor can be divided into a hydrostatic or mean stress tensor o,,, which involves
only pure tension or compression, and a deviator stress tensor o/, which repre-
sents the shear stresses in the total state of stress (Fig. 2-18). In direct analogy
with the situation for strain, the hydrostatic component of the stress tensor
produces only elastic volume changes and does not cause plastic deformation.

Experiment shows that the yield stress of metals is independent of hydrostatic
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Total stress = Hydrostahc stress + Stress deviator

Figure 2-18 Resolution of total stress into hydrostatic stress and stress deviator.

stress, although the fracture strain 1s strongly influenced by hydrostatic stress.
Because the stress deviator involves the shearing stresses, it 1s important in
causing plastic deformation. In Chap. 3 we shall see that the stress deviator 1s
useful 1n formulating theories of yielding.

The hydrostatic or mean stress is given by

Oy Oyt O,+0, 01 0,+ 0

0, = = = - 2-54
" 3 3 3 ( )
The decomposition of the stress tensor is given by
0,; = 0/, + 38,00 (2-55)
Therefore,
0/, =0, — 0,0 (2-56)
20, —0a, — o0,
3 | Ty T,
20, — 0, — O,
U;j = T, Y ; T, (2-57) .
20, —0_— 0
4 X y
sz TZ_}’ 3

It can be seen readily that the stress deviator involves shear stresses. For example
referring o;; to a system of principal axes,

3

20, — 0, — 0y (01‘“02)"' (01 _93)
3 3

2(01—02 0, — O, 2

0, =

5 + ; = 5(73 + 72) (2-58)

where 7, and 1, are principal shearing stresses.
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Since o/; 1s a second-rank tensor, it has principal axes. The principal values of
the stress deviator are the roots of the cubic equation’

(6’ = J (') —Jo' =J, =0  (2-59)

where J,, J,, J; are the invariants of the deviator stress tensor. J; 1s the sum of
the principal terms in the diagonal of the matrix of components of o;;. |

J = (0, —0,) + (6,~0,) +(0,~0,)=0 ~ (2-60)
J, can be obtained from the sum of the principal minors of o;;. '

— 2 2 Y N
=1, +7,+ T’ — 6,6, — 0)0, — 0,0,

(o 0 (o, ) (o, w (e + 1+ 72)]
The third invariant J, 1s the determinant of Eq. (2-57).

2-11 ELASTIC STRESS-STRAIN RELATIONS

Up till now our discussion of stress and strain has been perfectly general and
applicable to any continuum. Now, if we want to relate the stress tensor with the
strain tensor, we must introduce the properties of the material. Equations of this
nature are called constitutive equations. In this chapter we shall consider only
constitutive equations for elastic solids. Moreover, 1nitially we shall only consider
1sotropic elastic sohds.

In Chap. 1 we saw that elastic stress 1s linearly related to elastic strain by
means of the modulus of elasticity (Hooke’s law).

o, = Ee¢, ) (2-62)

where E 1s the modulus of elasticity in tension or compression. While a tensile
- force in the x direction produces an extension along that axis, it also produces a
contraction in the transverse y and z directions. The transverse strain has been
found by experience to be a constant fraction of the strain in the longitudinal
direction. This is known as Poisson’s ratio, denoted by the symbol »

Vo,

e, =€, = Tre, =~ — (2-63)
Only the absolute value of v is used in calculations. For most metals the values?®
of v are close to 0.33.

To develop the stress-strain relations for a three-dimensional state of stress,
consider a unit cube subjected to normal stresses o, 0,, 6, and shearing stresses
Teps Ty T,- BeCause the elastic stresses are small and the material is 1SOtropic, we
can assume that normal stress o, does not produce shear strain on the x, y, or z

~ planes and that a shear stress 7, , does not produce normal strains on the x, y, or

' Note that we use a negative sign for the coefficient of ¢’. Compare with Eq. (2-14).
> W. Koster and H. Franz, Metall. Rev., vol. 6, pp. 1-55, 1961.



48 MECHANICAL FUNDAMENTALS

z planes. We can then apply the principle of superposition’ to determine the
strain produced by more than one stress component. For example, the stress o,

produces a normal strain ¢, and two transverse strains ¢, = —»e, and ¢, = —ve,.
Thus,
Strain in the Strain in the Strain 1n the
Stress x direction y direction z direction
o, Yo, Vo,
o £, = £, = £, = —
: *E ’ E f E
- Vﬂy - f_-f, l’ﬂy
g, £, = E Ey = I E, = E
Vo, V0o, o,
o £, = 3 £, = — E £, = %

By superposition of the components of strain in the x, y, and z directions
E, = -E— [ox — v(oy + az)]

1
£, = E[oy — (o, + ox)] (2-64)

£, = E[Uz — v(o, + oy)]

The shearing stresses acting on the unit cube produce shearing strains.
Txy = Gny Tyz — G.sz Tz = nyz (2_65)

The proportionality constant G 1s the modulus of elasticity in shear, or the
modulus of rigidity. Values of G are usually determined from a torsion test.

We have seen that the stress-strain equations for an isotropic elastic solid
involve three constants, £, G, and ». Typical values of these constants for a .
number of metals are given 1in Table 2-1.

Still another elastic constant is the bulk modulus or the volumetric modulus of
elasticity K. The bulk modulus is the ratio of the hydrostatic pressure to the
dilatation that it produces

PO . )
A A B | (2-66)

where —p 1s the hydrostatic pressure and 8 is the compressibility.
Many useful relationships may be derived between the elastic constants
E, G, v, K. For example, if we add up the three equations (2-64),

1 - 2p
e, + e, +t g = 7 (o, +0,+ 0,)

! The principle of superposition states that two strains may be combined by direct Superposition.
The order of application has no effect on the final strain of the body.

yn . -:-'._'. . e e ..
: [ooiobyiee. i SR i e e iy b g
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Table 2-1 Typical room-temperature values of elastic constants for
isotropic materials

Modulus of Shear

elasticity, modulus, Poisson’s
Matenal GPa GPa ratio
Aluminum alloys 72.4 27.5 0.31
Copper 110 414 0.33
Steel (plain carbon and low-alloy) 200 75.8 0.33
Stainless steel (18-8) 193 65.6 (.28
Titanium 117 44.8 0.31
Tungsten 400 157 0.27

The term on the left 1s the volume strain A, and the term on the right 1s 30,

1 — 2»
A= Z 30,
G, E
oI - K = X = 3(1 — 2p) (2-67)

Another important relationship is the expression relating E, G, and ». This
equation is usually developed in a first course in strength of materials.’

o _
¢ =30 ) (2-68)

Many other relationships can be developed between these four isotropic elastic
constants. For example,

LK 1 - 2G/3K
" 14+3K/G | 2+2G/3K
3(1 - 2»)K E

G = K=
2(1 + ») 9 — 3E/G

Equations (2-64) and (2-65) may be expressed succinctly in tensor notation

1 +» Y
g = 3 0, Eokk‘sff (2-69)

' For a geometric development see D. C. Drucker, “Introduction to Mechanics of Deformable
Solids,” pp. 64-65, McGraw-Hill Book Company, New York, 1967. For a derivation based on
1sotropy and transformation of axes see Chou and Pagano, op. cit., pp. 58-59.
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For example, if i = j = X,

1+ %
Exx = E O x E (Uxx T Uyy + Uzz)(l)

1 .
= E[Gxx_ p(ayy_l—'ozz)]
Ifi':xand ]=y5

Y, 1+ 2
Exy = 2}’ o E Txy = Eakk(o) |
where
1 +v 1 1
r = “2"'5 and ny = E'rxy

2-12 CALCULATION OF STRESSES FROM ELASTIC STRAINS

Since for small elastic strains there is no coupling between the expressions for
normal stress and strain and the equations for shear stress and shear strain, 1t 1s

possible to invert Eqgs. (2-64) and (2-65) to solve for stress in terms of strain.
From Eq. (2-64),

o, +0,+ 0,= . (e, + &, +¢,) (2-70)
1+ ¥
€y =~ 0y E(Ux + 6, + 0,) (2-71)
Substitution of Eq. (2-70) into Eq. (2-71) gives
E vE
o e, + (e, + ¢, +¢,) (2-72)

T 14" (1+»)(1-2»)
Or 1n tensor notation "
E vE

T+ ) (1 = 20)

Upon expansion, Eq. (2-73) gives three equations for normal stress and six
equations for shear stress. Equation (2-72) is often written in a briefer form by
letting

5 (2-73)

ag..

U=1+v Y

y vE

- = A Lameé’s constant
| (1+»)(1 — 2»)

and noting that A = ¢, + ¢, + ¢,.
o, = 2Ge, + AA (2-74)

The stresses and the strains can be broken into deviator and hydrostatic

components. The deviatoric response (distortion) 1s related to the stress devia-
tor by

E
o/ = gh. = ZGEEJ- (2—75)

Yoo 1+ Y
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while the relationship between hydrostatic stress and mean strain 1s
E
g.. =
1 =2y

For a case of plane stress (o, = 0), two simple and useful equations relating
stress to strain may be obtained by solving simultaneously two of the equations of

(2-64).

.. = 3Ke,, L (2-76).

E

01—1_p2(51+v£2) _
. (2-77)
0, = 1 — pz(ez + ”1)
A situation of plane stress exists typically in a thin sheet loaded in the plane of

the sheet or a thin-wall tube loaded by internal pressure where there 1s no stress
normal to a free surface.

Another important situation 18 plane strain (e; = 0), which occurs typically
when one dimension is much greater than the other two, as in a long rod or a
cylinder with restrained ends. Some type of physical restraint exists to limit the
strain in one direction, so

£, = E[G3 — v(crl + 02)] = ()

bl.lt 03 == V(Ul + 02)

Therefore, a stress exists even though the strain 1s zero. SubStituting this value
into Eq. (2-64), we get

(=11 o, = 51 + o)

! 2
£, = E[(l — # Yo, — v(1 + v)c.rl] (2-78)
g, = 0

Example Strain-gage measurements made on the free surface of a steel plate
indicate that the principal strains are 0.004 and 0.001. What are the principal
stresses? |

Since this is a condition of plane stress, Eqs. (2-77) apply. From Table
2-1, E = 200 GPa and v = 0.33.

E 200 - _
1= T3 (g, + ve,y) = 0100 {0.004 + 0.33(0.001)}

200

= (0.004 + 0.0003) = 0.965 GPa = 965 MPa
0.891

200
001 + 0.0013) = 0.516 GP
gy (00 013) GPa

0, = ] __Vz(*s2 + vel) =
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Note the error that would result if the principal stresses were computed by
simply multiplying Young’s modulus by the strain.

o, = Ee; = 200(0.004) = 800 MPa incorrect
o, = Fe;, = 200(0.001) = 200 MPa incorrect

2-13 STRAIN ENERGY

The elastic strain energy U 1s the energy expended by the action of external forces
in deforming an elastic body. Essentially all the work performed during elastic
deformation is stored as elastic energy, and this energy 1s recovered on the release
of the applied forces. Energy (or work) 1s equal to a force multiplied by the
distance over which 1t acts. In the deformation of an elastic body, the force and
deformation increase linearly from imitial values of zero so that the average energy
is equal to one-half of their product. This is also equal to the area under the
load-deformation curve.

U = 1P

For an elemental cube that i1s subjected to only a tensile stress along the x axis,
the elastic strain energy is given by

dU = 1Pdu = (o A)(e, dx)
= $(o.e,)(4 dx) (2-79)

Equation (2-79) describes the total elastic energy absorbed by the element. Since
A dx 1s the volume of the element, the strain energy per unit volume or strain
energy density U, 1s given by
_ 1 16 1 > 1 - . -80)
0 2 Uxex 2 E T 2 EJC ( )
Note that the lateral strains which accompany deformation in simple tension do
not enter into the expression for strain energy because forces do not exist in the
direction of the lateral strains. |
By the same type of reasoning, the strain energy per unit volume of an
element subjected to pure shear 1s given by
U : Ly 1 2 G 2-81)
O_ZTnyxy_hz G 2ny (-

The elastic strain energy for a general three-dimensional stress distribution
may be obtained by superposition.

= 1(o.¢, + 0,6, + 0,6, + T Y, T T Y T T0Y,:) (2-82)

Or 1n tensor notation
U, =50, ¢, (2-83)

RN

Substituting the equations of Hooke’s law [Eqs. (2-64) and (2-65)] for the strains
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in Eq. (2-82) results in an expression for strain energy per unit volume expressed
solely in terms of the stress and the elastic constants
1

U, = a—E—(of +0’ + 022) E(axoy + 0,0, + 0,0,)

1
| Y ('rxzy + szz + 'ryzj_,) (2‘84)

Also, by substituting Eqs. (2-74) into Eq. (2-82), the stresses are eliminated, and
the strain energy is expressed in terms of strains and the elastic constants

Uy = N2+ G(e2 + 2+ e2) + 1G(v2, + v2 + 72) (2-85)

It 1s interesting to note that the dernivative of U, with respect to any strain
component gives the corresponding stress component. For example,

U,
de

X

= AA + 2Ge, = o, (2-86)

In the same way, dU,/do, = ¢, . Methods of calculation using strain energy to
arrive at stresses and strains are powerful tools in elasticity analysis. Some of the
better known techniques are Castigliano’s theorem, the theorem of least work,
and the principal of virtual work.

2-14 ANISOTROPY OF ELASTIC BEHAVIOR

Up to this point we have considered elastic behavior from a sismple phenomeno-
logical point of view, ie., Hooke’s law was presented as a well-established
empirical law and our attention was directed at developing useful relationships
between stress and strain in an isotropic elastic solid. In this section we consider
the fact that the elastic constants of a crystal vary markedly with orientation.
However, first it is important to discuss briefly the nature of the elastic forces
between atoms. _

When a force is applied to a crystalling solid, 1t either pulls the atoms apart or
pushes them together. The applied force is resisted by the forces of attraction or
repulsion between the atoms. A convenient way to look at this 1s with an
energy-distance diagram (Fig. 2-19), which represents the interaction energy
(potential energy) between two atoms as they are separated by a distance a. When
the external force is zero, the atoms are separated by a distance equal to the
equilibrium spacing a = a,. For small applied forces, the atoms will find a new
equilibrium spacing a at which the external and internal forces are balanced. The
displacement of the atom is u = a — a,,. Since force is the derivative of potential
energy with distance [compare Eq. (2-86)], the force to produce a given equi-
librium displacement is

_ dg(u)

P
du

(2-87)
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Sy T

Interaction energy ¢
|

Figure 2-19 Interaction energy vs. separation between
atoms

where ¢(u) 1s the interaction bond energy at a displacement u. Thus, the force on
a bond 1s a function of displacement u. For each displacement there 1s a
characteristic value of force P(u). Moreover, the deformation of the bonds
between atoms 1s reversible. When the displacement returns to some initial value
u, after being extended to u, the force returns to its previous value P(uy).

In an elastic solid the bond energy is a continuous function of displacement.!
Thus, we can express ¢(u) as a Taylor series

do 1

-0 (20

d ¢

du?

u? + - (2-88)

0

where ¢, 1s the energy at ¥ = 0 and the differential coefficients are measured at
u = 0. Since the force 1s zero when a = a,, d¢/du = (

) - 2
¢(u) ¢0 + ) du2 )(}u
(2-89)
do(u) [(d*¢)
P = == S| U

The coefficient (d?¢/du®), is the curvature of the energy-distance curve at
u = a,. Since 1t 1s independent of u, the coefficient 1s a constant, and Eq. (2-89) is
equivalent to P = ku, which 1s Hooke’s law 1n 1ts original form. When Eq. (2-89)
1s expressed 1n terms of stress and strain, the coefficient 1s directly proportional to
the elastic constant of the material. It has the same value for both tension and
compression since it i1s independent of the sign of u. Thus, we have shown that
the elastic constant 1s determined by the sharpness of curvature of the minimum
in the energy-distance curve. It 1s therefore a basic property of the material, not
readily changed by heat treatment or defect structure, although it would be
expected to decrease with increasing temperature. Moreover, since the binding
forces will be strongly affected by distance between atoms, the elastic constants
will vary with direction in the crystal lattice.

! This development follows that given by A. H. Cottreli, “ The Mechanical Properties of Matter,”
pp- 84-85, John Wiley & Sons, Inc., New York, 1964. /
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In the generalized case’ Hooke’s law may be expressed as

€i; = Sfjk!“k! | (2‘90)

i)
and
0;i = “ijkitrr (2'91)

]

where S, ., 1s the compliance tensor and C,,, 1s the elastic stiffness (often called
just the elastic constants). Both S, ,; and C, , are fourth-rank tensor quantities.
If we expanded Eq. (2-90) or (2-91), we would get nine equations, each with_nine
terms, 81 constants in all. However, we know that both ¢, and o,; are symmetric

tensors, that 1s, o, which immediately leads to appreaable simplification.

Thus, we can wnté e
€, =940k OF &;=38,,04
and since SiikiOkt = Si 0k
0, =0y and S, =S,
Also, we could write
Eij = Sijklokf = & T OikiOrs

Sfjk! — ikl

Therefore, because of the symmetry of the stress and strain tensors, only 36 of the
components of the compliance tensor are independent and distinct terms. The
same 1s true of the elastic stiffness tensor.

Expanding Eq. (2-91) and taking into account the above relationships gives
equations like

03 = Ciinénn + C1122€22 + Ciy33833 1 Ciris(2ey3) + C1113(2813) + Ci112(2815)

-------------------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllll

........................................................

llllllllllllllllllllllllllllllllllllllllllllllllllllllll

These equations show that, in contrast to the situation for an isotropic elastic
solid, Eq. (2-72), for an anisotropic elastic solid both normal strains and shear
strains are capable of contributing to a normal stress.

! An excellent text that deals with the anisotropic properties of crystals in tensor notation is J. F.
Nye, “Physical Properties of Crystals,” Oxford University Press, London, 1957. For a treatment of
anisotropic elasticity see R. F. S. Hearmon, “An Introduction to Applied Anisotropic Elasticity,”
Oxford University Press, London, 1961. A fairly concise but complete discussion of crystal elasticity is

given by S. M. Edelglass, “Engineering Materials Science,” pp. 277-301. The Ronald Press Company,
New York, 1966.



56 MECHANICAL FUNDAMENTALS

In expanding Eq. (2-90), we express the shearing strains by the more
conventional engineering shear strain y = 2e.

€1 = S 01 T S112202 T 51133033 + 281123057 +25,1136,3 + 281112012

.............................................

..........................................

Yo3 = 2833 = 285311011 T 285300095 + 285333033 + 48535303
+45,313013 + 45,3150,

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

The usual convention for designating components of elastic compliance and
elastic stiffness uses only two subscripts instead of four. This is called the
contracted notation. The subscripts simply denote the row and column in the
matrix of components in which they fall. |

01 = Cpi8p + Caggp + Craegy + Crpyas + Crsvys + Cigrin

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

........................................

-------------------------------------------

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

and

-----------------------------------------

(2-95)

lllllllllllllllllllllllllllllllllllllllll

-----------------------------------------

By comparing coefficients in Egs. (2-92) and (2-94) and Eqgs. (2-93) and (2- 95) we
note, for example, that

Crzn = Cyy Cii1p = (5
S$11220 = €y 285, = Cy 455373 = Sy
The elastic stiffness constants are defined by equations like

Aoy,

Cii = A all ;. constant except ¢,
e

Unfortunately, a measurement such as this is difficult to do experimentally since
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the specimen must be constrained mechanically to prevent strains such as e,,. It1s
much easier to experimentally determine the coefficients of the elastlc compliance
from equations of the type

Ag,
Ao,

31 = all o;; constant except o,

If the components of §,; have been determined experimentally, then the compo-
nents of C;; can be determined by matrix inversion. _

At this stage we have 36 independent constants, but further reduction in the
number of independent constants is possible. By using the relationship given in
Eq. (2-86), we can show that the constants are symmetrical, that 1s, C;; = C,;. For
example,

dU |
de.. 011 = Cii&p + Cragpp 1+ Cpaegs + Cruyay + Cisvis + Cigiz
11
a*U c
dey, 0€,, - 12
dU
de =0y = (1811 + Cpgyy + Cpz833 + Cpyoz + stz T Coe1rz
22
U c
de,, de;; A
aZU aZU

12 21
de)) deyy  Oey, deyy

In general, C;; = C, and §,;, = §;,. Now, we start with 36 constants C, 7 but of
these there are six consants where i = j. This leaves 30 constants where i # j, but
only one-half of these are independent constants since C.; = C,;. Therefore, for
the general anisotropic linear elastic solid there are 30 /2 + 6 = 21 independent
elastic constants.

As a result of symmetry conditions found in diftferent crystal structures the

number of independent elastic constants can be reduced still further.

Rotational Number of independent
Crystal structure symmetry elastic constants
Triclinic None 21
Monoclinic 1 twofold rotation 13
Orthorhombic 2 perpendicular twofold rotations 9
Tetragonal 1 fourfold rotation 6
Hexagonal 1 sixfold rotation 5
Cubic 4 threefold rotations 3
[sotropic 2

—



58 MECHANICAL FUNDAMENTALS

Table 2-2 Stiffness and compliance constants for

cubic crystals

Metal Ci Ciz Cas 511 512 Saa
Aluminum - 108.2 61.3 28.5 15.7 —35.7 35.1
Copper 168.4 1214 75.4 14.9 —6.2 13.3
Iron 237.0 141.0 116.0 8.0 —2.8 8.6
Tungsten 501.0 198.0 1514 2.6 —0.7 6.6

Stiffness constants in units of GPa.
Compliance constants in units of TPa ™'

For a cubic crystal structure

c. - S+ S
. (Su o Su)(Sn + 2Slz)
| -5 * o
Cp = - (2-96)
(811 o Su)(Su + 2Slz)
. 1
S,

The modulus of elasticity in any direction of a cubic crystal (described by the
direction cosines /, m, n) 1s given by '

>_f .

- 1
E:Su_z (Su_"Su) _5544 (12m2+ mn* + 12”2) (2“97)

Typical values of elastic constants for cubic metals are given in Table 2-2.

By comparing the generalized Hooke’s law Eqgs. (2-95) with the equations
using the common technical moduli Eq. (2-64) we can conclude that the elastic
constants for an isotropic material are given by

] Y 1
Su=E 81, = E S44="é

Since S,; and §,, are the independent constants, their relationship to S44 can be

obtained from Eq. (2-68)

E 1
¢= 2(1 + ») - 2(1/E + v/E)
1 1
B 544 B 2(511 - Sn)
or S =2(S;; — S;,) (2-98)

Comparable equations relating the elastic stiffness constants can be developed

-r - . . . .
. - r oy — = - " L - L - - - .
Rl T P T P B - e D e . . ; T i i . i . . . .

R - B B RN T R T R L o e e P R . .. .

. L R ) ..
i U L g i B s
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from Eqgs. (2-95) and (2-74).

Cpp = A Lamé’s constant
Cuy = %(Cu — Clz)

The technical elastic moduli E, », and G are usually measured by direct
static measurements 1n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>